Exemple #1
0
 def test_create_primary_beams_AZELGEO(self):
     self.createVis()
     for telescope in ['VLA', 'ASKAP', 'MID', 'MID_GAUSS', 'MID_GRASP', 'LOW']:
         model = create_image_from_visibility(self.vis, cellsize=0.001, override_cellsize=False)
         beam = create_pb(model, telescope=telescope, use_local=True)
         assert numpy.max(beam.data) > 0.0
         export_image_to_fits(beam, "%s/test_primary_beam_AZELGEO_%s.fits" % (self.dir, telescope))
Exemple #2
0
 def test_create_primary_beams(self):
     self.createVis(config='LOWBD2', rmax=1000.0)
     for telescope in ['VLA', 'ASKAP', 'MID', 'LOW']:
         model = create_image_from_visibility(self.vis,
                                              cellsize=0.001,
                                              override_cellsize=False)
         beam = create_pb(model, telescope=telescope)
         assert numpy.max(beam.data) > 0.0
         export_image_to_fits(
             beam, "%s/test_primary_beam_%s.fits" % (self.dir, telescope))
Exemple #3
0
 def test_create_primary_beams_RADEC(self):
     self.createVis()
     for telescope in ['VLA', 'ASKAP', 'MID', 'LOW']:
         model = create_image_from_visibility(self.vis,
                                              cellsize=self.cellsize,
                                              npixel=self.npixel,
                                              override_cellsize=False)
         beam = create_pb(model, telescope=telescope, use_local=False)
         assert numpy.max(beam.data) > 0.0
         export_image_to_fits(
             beam,
             "%s/test_primary_beam_RADEC_%s.fits" % (self.dir, telescope))
Exemple #4
0
def create_unittest_components(model,
                               flux,
                               applypb=False,
                               telescope='LOW',
                               npixel=None,
                               scale=1.0,
                               single=False,
                               symmetric=False):
    # Fill the visibility with exactly computed point sources.

    if npixel == None:
        _, _, _, npixel = model.data.shape
    spacing_pixels = int(scale * npixel) // 4
    log.info('Spacing in pixels = %s' % spacing_pixels)

    if not symmetric:
        centers = [(0.2, 1.1)]
    else:
        centers = list()

    if not single:
        centers.append([0.0, 0.0])

        for x in numpy.linspace(-1.2, 1.2, 7):
            if abs(x) > 1e-15:
                centers.append([x, x])
                centers.append([x, -x])
    model_pol = model.polarisation_frame
    # Make the list of components
    rpix = model.wcs.wcs.crpix
    components = []
    for center in centers:
        ix, iy = center
        # The phase center in 0-relative coordinates is n // 2 so we centre the grid of
        # components on ny // 2, nx // 2. The wcs must be defined consistently.
        p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
            int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
        sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1)
        log.info("Component at (%f, %f) [0-rel] %s" % (p[0], p[1], str(sc)))

        # Channel images
        comp = create_skycomponent(direction=sc,
                                   flux=flux,
                                   frequency=model.frequency,
                                   polarisation_frame=model_pol)
        components.append(comp)

    if applypb:
        beam = create_pb(model, telescope=telescope)
        components = apply_beam_to_skycomponent(components, beam)

    return components
Exemple #5
0
def create_low_test_skymodel_from_gleam(npixel=512,
                                        polarisation_frame=PolarisationFrame(
                                            "stokesI"),
                                        cellsize=0.000015,
                                        frequency=numpy.array([1e8]),
                                        channel_bandwidth=numpy.array([1e6]),
                                        phasecentre=None,
                                        kind='cubic',
                                        applybeam=True,
                                        flux_limit=0.1,
                                        flux_max=numpy.inf,
                                        flux_threshold=1.0,
                                        insert_method='Nearest',
                                        telescope='LOW') -> SkyModel:
    """Create LOW test skymodel from the GLEAM survey

    Stokes I is estimated from a cubic spline fit to the measured fluxes. The polarised flux is always zero.

    See http://www.mwatelescope.org/science/gleam-survey The catalog is available from Vizier.

    VIII/100   GaLactic and Extragalactic All-sky MWA survey  (Hurley-Walker+, 2016)

    GaLactic and Extragalactic All-sky Murchison Wide Field Array (GLEAM) survey. I: A low-frequency extragalactic
    catalogue. Hurley-Walker N., et al., Mon. Not. R. Astron. Soc., 464, 1146-1167 (2017), 2017MNRAS.464.1146H

    :param telescope:
    :param npixel: Number of pixels
    :param polarisation_frame: Polarisation frame (default PolarisationFrame("stokesI"))
    :param cellsize: cellsize in radians
    :param frequency:
    :param channel_bandwidth: Channel width (Hz)
    :param phasecentre: phasecentre (SkyCoord)
    :param kind: Kind of interpolation (see scipy.interpolate.interp1d) Default: cubic
    :param applybeam: Apply the primary beam?
    :param flux_limit: Weakest component
    :param flux_max: Maximum strength component to be included in components
    :param flux_threshold: Split between components (brighter) and image (weaker)
    :param insert_method: Nearest | PSWF | Lanczos
    :return:
    :return: SkyModel

    """

    if phasecentre is None:
        phasecentre = SkyCoord(ra=+15.0 * u.deg,
                               dec=-35.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')

    radius = npixel * cellsize

    sc = create_low_test_skycomponents_from_gleam(
        flux_limit=flux_limit,
        polarisation_frame=polarisation_frame,
        frequency=frequency,
        phasecentre=phasecentre,
        kind=kind,
        radius=radius)

    sc = filter_skycomponents_by_flux(sc, flux_max=flux_max)
    if polarisation_frame is None:
        polarisation_frame = PolarisationFrame("stokesI")

    npol = polarisation_frame.npol
    nchan = len(frequency)
    shape = [nchan, npol, npixel, npixel]
    w = WCS(naxis=4)
    # The negation in the longitude is needed by definition of RA, DEC
    w.wcs.cdelt = [
        -cellsize * 180.0 / numpy.pi, cellsize * 180.0 / numpy.pi, 1.0,
        channel_bandwidth[0]
    ]
    w.wcs.crpix = [npixel // 2 + 1, npixel // 2 + 1, 1.0, 1.0]
    w.wcs.ctype = ["RA---SIN", "DEC--SIN", 'STOKES', 'FREQ']
    w.wcs.crval = [phasecentre.ra.deg, phasecentre.dec.deg, 1.0, frequency[0]]
    w.naxis = 4
    w.wcs.radesys = 'ICRS'
    w.wcs.equinox = 2000.0

    model = create_image_from_array(numpy.zeros(shape),
                                    w,
                                    polarisation_frame=polarisation_frame)

    if applybeam:
        beam = create_pb(model, telescope=telescope)
        sc = apply_beam_to_skycomponent(sc, beam)

    weaksc = filter_skycomponents_by_flux(sc, flux_max=flux_threshold)
    brightsc = filter_skycomponents_by_flux(sc, flux_min=flux_threshold)
    model = insert_skycomponent(model, weaksc, insert_method=insert_method)

    log.info(
        'create_low_test_skymodel_from_gleam: %d bright sources above flux threshold %.3f, %d weak sources below '
        % (len(brightsc), flux_threshold, len(weaksc)))

    return SkyModel(components=brightsc,
                    image=model,
                    mask=None,
                    gaintable=None)
Exemple #6
0
def create_low_test_image_from_gleam(npixel=512,
                                     polarisation_frame=PolarisationFrame(
                                         "stokesI"),
                                     cellsize=0.000015,
                                     frequency=numpy.array([1e8]),
                                     channel_bandwidth=numpy.array([1e6]),
                                     phasecentre=None,
                                     kind='cubic',
                                     applybeam=False,
                                     flux_limit=0.1,
                                     flux_max=numpy.inf,
                                     flux_min=-numpy.inf,
                                     radius=None,
                                     insert_method='Nearest') -> Image:
    """Create LOW test image from the GLEAM survey

    Stokes I is estimated from a cubic spline fit to the measured fluxes. The polarised flux is always zero.

    See http://www.mwatelescope.org/science/gleam-survey The catalog is available from Vizier.

    VIII/100   GaLactic and Extragalactic All-sky MWA survey  (Hurley-Walker+, 2016)

    GaLactic and Extragalactic All-sky Murchison Wide Field Array (GLEAM) survey. I: A low-frequency extragalactic
    catalogue. Hurley-Walker N., et al., Mon. Not. R. Astron. Soc., 464, 1146-1167 (2017), 2017MNRAS.464.1146H

    :param npixel: Number of pixels
    :param polarisation_frame: Polarisation frame (default PolarisationFrame("stokesI"))
    :param cellsize: cellsize in radians
    :param frequency:
    :param channel_bandwidth: Channel width (Hz)
    :param phasecentre: phasecentre (SkyCoord)
    :param kind: Kind of interpolation (see scipy.interpolate.interp1d) Default: linear
    :return: Image

    """

    if phasecentre is None:
        phasecentre = SkyCoord(ra=+15.0 * u.deg,
                               dec=-35.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')

    if radius is None:
        radius = npixel * cellsize / numpy.sqrt(2.0)

    sc = create_low_test_skycomponents_from_gleam(
        flux_limit=flux_limit,
        polarisation_frame=polarisation_frame,
        frequency=frequency,
        phasecentre=phasecentre,
        kind=kind,
        radius=radius)

    sc = filter_skycomponents_by_flux(sc, flux_min=flux_min, flux_max=flux_max)

    if polarisation_frame is None:
        polarisation_frame = PolarisationFrame("stokesI")

    npol = polarisation_frame.npol
    nchan = len(frequency)
    shape = [nchan, npol, npixel, npixel]
    w = WCS(naxis=4)
    # The negation in the longitude is needed by definition of RA, DEC
    w.wcs.cdelt = [
        -cellsize * 180.0 / numpy.pi, cellsize * 180.0 / numpy.pi, 1.0,
        channel_bandwidth[0]
    ]
    w.wcs.crpix = [npixel // 2 + 1, npixel // 2 + 1, 1.0, 1.0]
    w.wcs.ctype = ["RA---SIN", "DEC--SIN", 'STOKES', 'FREQ']
    w.wcs.crval = [phasecentre.ra.deg, phasecentre.dec.deg, 1.0, frequency[0]]
    w.naxis = 4
    w.wcs.radesys = 'ICRS'
    w.wcs.equinox = 2000.0

    model = create_image_from_array(numpy.zeros(shape),
                                    w,
                                    polarisation_frame=polarisation_frame)

    model = insert_skycomponent(model, sc, insert_method=insert_method)
    if applybeam:
        beam = create_pb(model, telescope='LOW')
        model.data[...] *= beam.data[...]

    return model
 def apply_pb_comp(vt, model, comp):
     telescope = vt.configuration.name
     pb = create_pb(model, telescope)
     return apply_beam_to_skycomponent(comp, pb, flux_limit)
 def apply_pb_image(vt, model):
     telescope = vt.configuration.name
     pb = create_pb(model, telescope)
     model.data *= pb.data
     return model