def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(True)

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_prog = fluid.Program()
    eval_program = fluid.Program()

    feeded_var_names, target_vars, fetches_var_name = program.build_export(
        config, eval_program, startup_prog)
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    init_model(config, eval_program, exe)

    fluid.io.save_inference_model(dirname="./output/",
                                  feeded_var_names=feeded_var_names,
                                  main_program=eval_program,
                                  target_vars=target_vars,
                                  executor=exe,
                                  model_filename='model',
                                  params_filename='params')
    print("save success, output_name_list:", fetches_var_name)
Exemple #2
0
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_prog = fluid.Program()
    eval_program = fluid.Program()
    eval_build_outputs = program.build(config,
                                       eval_program,
                                       startup_prog,
                                       mode='test')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    init_model(config, eval_program, exe)

    if alg in ['EAST', 'DB']:
        eval_reader = reader_main(config=config, mode="eval")
        eval_info_dict = {'program':eval_program,\
            'reader':eval_reader,\
            'fetch_name_list':eval_fetch_name_list,\
            'fetch_varname_list':eval_fetch_varname_list}
        metrics = eval_det_run(exe, config, eval_info_dict, "eval")
        logger.info("Eval result: {}".format(metrics))
    else:
        reader_type = config['Global']['reader_yml']
        if "benchmark" not in reader_type:
            eval_reader = reader_main(config=config, mode="eval")
            eval_info_dict = {'program': eval_program, \
                              'reader': eval_reader, \
                              'fetch_name_list': eval_fetch_name_list, \
                              'fetch_varname_list': eval_fetch_varname_list}
            metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
            logger.info("Eval result: {}".format(metrics))
        else:
            eval_info_dict = {'program':eval_program,\
                'fetch_name_list':eval_fetch_name_list,\
                'fetch_varname_list':eval_fetch_varname_list}
            test_rec_benchmark(exe, config, eval_info_dict)
Exemple #3
0
def load_model():

    config = program.load_config('./configs/det/det_r18_vd_db_v1.1.yml')

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    det_model = create_module(
        config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, eval_outputs = det_model(mode="test")
            fetch_name_list = list(eval_outputs.keys())
            eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    # load checkpoints
    checkpoints = config['Global'].get('checkpoints')
    if checkpoints:
        path = checkpoints
        fluid.load(eval_prog, path, exe)
        logger.info("Finish initing model from {}".format(path))
    else:
        raise Exception("{} not exists!".format(checkpoints))

    config_ocr = Cfg.load_config_from_name('vgg_seq2seq')
    config_ocr['weights'] = './my_weights/transformer.pth'
    config_ocr['cnn']['pretrained'] = False
    config_ocr['device'] = 'cpu'
    config_ocr['predictor']['beamsearch'] = False

    detector = Predictor(config_ocr)

    return detector, exe, config, eval_prog, eval_fetch_list
Exemple #4
0
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    print(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    det_model = create_module(
        config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, eval_outputs = det_model(mode="test")
            fetch_name_list = list(eval_outputs.keys())
            eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    # load checkpoints
    checkpoints = config['Global'].get('checkpoints')
    if checkpoints:
        path = checkpoints
        fluid.load(eval_prog, path, exe)
        logger.info("Finish initing model from {}".format(path))
    else:
        raise Exception("{} not exists!".format(checkpoints))

    save_res_path = config['Global']['save_res_path']
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))
    with open(save_res_path, "wb") as fout:

        test_reader = reader_main(config=config, mode='test')
        tackling_num = 0
        for data in test_reader():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("tackling_num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])

            img_list = np.concatenate(img_list, axis=0)
            outs = exe.run(eval_prog,\
                feed={'image': img_list},\
                fetch_list=eval_fetch_list)

            global_params = config['Global']
            postprocess_params = deepcopy(config["PostProcess"])
            postprocess_params.update(global_params)
            postprocess = create_module(postprocess_params['function'])\
                (params=postprocess_params)
            if config['Global']['algorithm'] == 'EAST':
                dic = {'f_score': outs[0], 'f_geo': outs[1]}
            elif config['Global']['algorithm'] == 'DB':
                dic = {'maps': outs[0]}
            else:
                raise Exception("only support algorithm: ['EAST', 'DB']")
            dt_boxes_list = postprocess(dic, ratio_list)
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
                src_img = cv2.imread(img_name)
                draw_det_res(dt_boxes, config, src_img, img_name)

    logger.info("success!")
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(True)

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()
    train_build_outputs = program.build(config,
                                        train_program,
                                        startup_program,
                                        mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(config,
                                       eval_program,
                                       startup_program,
                                       mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    # compile program for multi-devices
    train_compile_program = program.create_multi_devices_program(
        train_program, train_opt_loss_name)
    init_model(config, train_program, exe)

    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':train_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list}

    eval_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg in ['EAST', 'DB']:
        program.train_eval_det_run(config, exe, train_info_dict,
                                   eval_info_dict)
    else:
        program.train_eval_rec_run(config, exe, train_info_dict,
                                   eval_info_dict)
Exemple #6
0
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_ops'] = char_ops

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    #     check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, outputs = rec_model(mode="test")
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    init_model(config, eval_prog, exe)

    blobs = reader_main(config, 'test')
    imgs = next(blobs())
    for img in imgs:
        predict = exe.run(program=eval_prog,
                          feed={"image": img},
                          fetch_list=fetch_varname_list,
                          return_numpy=False)

        preds = np.array(predict[0])
        if preds.shape[1] == 1:
            preds = preds.reshape(-1)
            preds_lod = predict[0].lod()[0]
            preds_text = char_ops.decode(preds)
        else:
            end_pos = np.where(preds[0, :] == 1)[0]
            if len(end_pos) <= 1:
                preds_text = preds[0, 1:]
            else:
                preds_text = preds[0, 1:end_pos[1]]
            preds_text = preds_text.reshape(-1)
            preds_text = char_ops.decode(preds_text)

        print(preds)
        print(preds_text)

    # save for inference model
    target_var = []
    for key, values in outputs.items():
        target_var.append(values)

    fluid.io.save_inference_model(
        "./output/",
        feeded_var_names=['image'],
        target_vars=target_var,
        executor=exe,
        main_program=eval_prog,
        model_filename="model",
        params_filename="params")