def process_geojson_features(geojson_features, raster, header, csvfile):
    """Using a raster input, get values of a raster at features in geojson.
    Output the final points and depths to a csv file."""

    # write to csv file as depth found
    csv_writer = csv.writer(csvfile)
    csv_writer.writerow(header)

    # provide progress whilst processing: number given is the total number of features in the cruise track
    number_features_to_process = len(geojson_features)
    progress_report = ProgressReport(number_features_to_process)

    # process each of the shapefiles
    for feature in geojson_features:

        # get point values from raster at points in shapefile
        result = rasterstats.gen_point_query(feature, raster, geojson_out=True)

        # for each value obtained from the raster, output a line into a csvfile
        for r in result:
            csv_writer.writerow([
                r['properties']['date_time'], r.geometry.coordinates[1],
                r.geometry.coordinates[0], r['properties']['value']
            ])

            progress_report.increment_and_print_if_needed()
Exemple #2
0
def load_materials(progress: ProgressReport,
                   manager: ImportManager) -> List[bpy.types.Material]:

    progress.enter_substeps(len(manager.gltf.textures), "Loading materials...")
    materials = [
        _create_material(progress, manager, material)
        for material in manager.gltf.materials
    ]
    progress.leave_substeps()
    return materials
Exemple #3
0
def load_meshes(
    progress: ProgressReport, manager: ImportManager
) -> List[Tuple[bpy.types.Mesh, gltf_buffer.VertexBuffer]]:

    progress.enter_substeps(len(manager.gltf.meshes), "Loading meshes...")
    meshes = [
        _create_mesh(progress, manager, mesh) for mesh in manager.gltf.meshes
    ]
    progress.leave_substeps()
    return meshes
Exemple #4
0
    def create_object(self, progress: ProgressReport,
                      collection: bpy.types.Collection,
                      manager: import_manager.ImportManager)->None:
        # create object
        if self.gltf_node.mesh != -1:
            self.blender_object = bpy.data.objects.new(
                self.name, manager.meshes[self.gltf_node.mesh][0])
        else:
            # empty
            self.blender_object = bpy.data.objects.new(self.name, None)
            self.blender_object.empty_display_size = 0.1
            # self.blender_object.empty_draw_type = 'PLAIN_AXES'
        collection.objects.link(self.blender_object)
        self.blender_object.select_set("SELECT")

        self.blender_object['js'] = json.dumps(self.gltf_node.js, indent=2)

        # parent
        if self.parent:
            self.blender_object.parent = self.parent.blender_object

        if self.gltf_node.translation:
            self.blender_object.location = manager.mod_v(
                self.gltf_node.translation)

        if self.gltf_node.rotation:
            r = self.gltf_node.rotation
            q = mathutils.Quaternion((r[3], r[0], r[1], r[2]))
            with tmp_mode(self.blender_object, 'QUATERNION'):
                self.blender_object.rotation_quaternion = manager.mod_q(q)

        if self.gltf_node.scale:
            s = self.gltf_node.scale
            self.blender_object.scale = (s[0], s[2], s[1])

        if self.gltf_node.matrix:
            m = self.gltf_node.matrix
            matrix = mathutils.Matrix((
                (m[0], m[4], m[8], m[12]),
                (m[1], m[5], m[9], m[13]),
                (m[2], m[6], m[10], m[14]),
                (m[3], m[7], m[11], m[15])
            ))
            t, q, s = matrix.decompose()
            self.blender_object.location = manager.mod_v(t)
            with tmp_mode(self.blender_object, 'QUATERNION'):
                self.blender_object.rotation_quaternion = manager.mod_q(q)
            self.blender_object.scale = (s[0], s[2], s[1])

        progress.step()

        for child in self.children:
            child.create_object(progress, collection, manager)
def load(self, context, filepath=""):
    ob = bpy.context.object
    if ob.type != 'ARMATURE':
        return "An armature must be selected!"

    path = os.path.dirname(filepath)
    path = os.path.normpath(path)

    try:
        ob.animation_data.action
    except:
        ob.animation_data_create()

    with ProgressReport(context.window_manager) as progress:
        # Begin the progress counter with 1 step for each file
        progress.enter_substeps(len(self.files))

        # Force all bones to use quaternion rotation
        # (Must be included or bone.rotation_quaternion won't update
        #  properly when setting the matrix directly)
        for bone in ob.pose.bones.data.bones:
            bone.rotation_mode = 'QUATERNION'

        for f in self.files:
            progress.enter_substeps(1, f.name)
            try:
                anim_path = os.path.normpath(os.path.join(path, f.name))
                load_seanim(self, context, progress, anim_path)
            except Exception as e:
                progress.leave_substeps("ERROR: " + repr(e))
            else:
                progress.leave_substeps()

        # Print when all files have been imported
        progress.leave_substeps("Finished!")
Exemple #6
0
def _create_mesh(
        progress: ProgressReport, manager: ImportManager, mesh: gltftypes.Mesh
) -> Tuple[bpy.types.Mesh, gltf_buffer.VertexBuffer]:
    blender_mesh = bpy.data.meshes.new(mesh.name)
    materials = [manager.materials[prim.material] for prim in mesh.primitives]
    for m in materials:
        blender_mesh.materials.append(m)

    attributes = gltf_buffer.VertexBuffer(manager, mesh)

    blender_mesh.vertices.add(len(attributes.pos) / 3)
    blender_mesh.vertices.foreach_set("co", attributes.pos)
    blender_mesh.vertices.foreach_set("normal", attributes.nom)

    blender_mesh.loops.add(len(attributes.indices))
    blender_mesh.loops.foreach_set("vertex_index", attributes.indices)

    triangle_count = int(len(attributes.indices) / 3)
    blender_mesh.polygons.add(triangle_count)
    starts = [i * 3 for i in range(triangle_count)]
    blender_mesh.polygons.foreach_set("loop_start", starts)
    total = [3 for _ in range(triangle_count)]
    blender_mesh.polygons.foreach_set("loop_total", total)

    blen_uvs = blender_mesh.uv_layers.new()
    for blen_poly in blender_mesh.polygons:
        blen_poly.use_smooth = True
        blen_poly.material_index = attributes.get_submesh_from_face(
            blen_poly.index)
        for lidx in blen_poly.loop_indices:
            index = attributes.indices[lidx]
            # vertex uv to face uv
            uv = attributes.uv[index]
            blen_uvs.data[lidx].uv = (uv.x, uv.y)  # vertical flip uv

    # *Very* important to not remove lnors here!
    blender_mesh.validate(clean_customdata=False)
    blender_mesh.update()

    progress.step()
    return blender_mesh, attributes
Exemple #7
0
def load(context, filepath: str, yup_to_zup: bool) -> Set[str]:

    path = pathlib.Path(filepath)
    if not path.exists():
        return {'CANCELLED'}

    with ProgressReport(context.window_manager) as progress:
        progress.enter_substeps(5, "Importing GLTF %r..." % path.name)

        body = b''
        try:
            with path.open('rb') as f:
                ext = path.suffix.lower()
                if ext == '.gltf':
                    gltf = gltftypes.from_json(json.load(f))
                elif ext == '.glb' or ext == '.vrm':
                    gltf, body = glb.parse_glb(f.read())
                else:
                    logger.error("%s is not supported", ext)
                    return {'CANCELLED'}
        except Exception as ex:  # pylint: disable=w0703
            logger.error("%s", ex)
            return {'CANCELLED'}

        manager = ImportManager(path, gltf, body, yup_to_zup)
        manager.textures.extend(load_textures(progress, manager))
        manager.materials.extend(load_materials(progress, manager))
        manager.meshes.extend(load_meshes(progress, manager))
        nodes, root = load_objects(context, progress, manager)

        # skinning
        armature_object = next(node for node in root.traverse()
                               if node.blender_armature)

        for node in nodes:
            if node.gltf_node.mesh != -1 and node.gltf_node.skin != -1:
                _, attributes = manager.meshes[node.gltf_node.mesh]

                skin = gltf.skins[node.gltf_node.skin]
                bone_names = [nodes[joint].bone_name for joint in skin.joints]

                #armature_object =nodes[skin.skeleton].blender_armature

                _setup_skinning(node.blender_object, attributes, bone_names,
                                armature_object.blender_armature)

        # remove empties
        _remove_empty(root)

        # done
        context.scene.update()
        progress.leave_substeps("Finished")
        return {'FINISHED'}
Exemple #8
0
def save(context, filepath, use_selection=True, provides_mtl=False):
    with ProgressReport(context.window_manager) as progress:
        scene = context.scene

        # Exit edit mode before exporting, so current object states are exported properly.
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')

        objects = context.selected_objects if use_selection else scene.objects

        progress.enter_substeps(1)
        write_file(context, filepath, objects, scene, provides_mtl, progress)
        progress.leave_substeps()

    return {'FINISHED'}
def _write(
        context,
        filepath,
        EXPORT_SEL_ONLY,  # ok
        EXPORT_GLOBAL_MATRIX,
        EXPORT_PATH_MODE,  # Not used
):

    with ProgressReport(context.window_manager) as progress:
        base_name, ext = os.path.splitext(filepath)
        context_name = [base_name, '', '',
                        ext]  # Base name, scene name, frame number, extension

        scene = context.scene

        # Exit edit mode before exporting, so current object states are exported properly.
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')

        orig_frame = scene.frame_current

        scene_frames = [orig_frame]  # Dont export an animation.

        # Loop through all frames in the scene and export.
        progress.enter_substeps(len(scene_frames))
        for frame in scene_frames:

            scene.frame_set(frame, 0.0)
            if EXPORT_SEL_ONLY:
                objects = context.selected_objects
            else:
                objects = scene.objects

            full_path = ''.join(context_name)

            progress.enter_substeps(1)
            write_file(
                full_path,
                objects,
                scene,
                EXPORT_GLOBAL_MATRIX,
                EXPORT_PATH_MODE,
                progress,
            )
            progress.leave_substeps()

        scene.frame_set(orig_frame, 0.0)
        progress.leave_substeps()
Exemple #10
0
def load(operator, context, filepath=""):
    with ProgressReport(context.window_manager) as progress:

        progress.enter_substeps(3, "Importing \'%s\' ..." % filepath)

        mainLoader = GR2Loader(filepath)

        progress.step("Parsing file ...", 1)

        mainLoader.parse(operator)

        progress.step("Done, building ...", 2)

        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT', toggle=False)

        mainLoader.build(operator.import_collision)

        progress.leave_substeps("Done, finished importing: \'%s\'" % filepath)

    return {'FINISHED'}
Exemple #11
0
def save(self, context):
    ob = bpy.context.object
    if ob.type != 'ARMATURE':
        return "An armature must be selected!"

    prefix = self.prefix  # os.path.basename(self.filepath)
    suffix = self.suffix

    path = os.path.dirname(self.filepath)
    path = os.path.normpath(path)

    # Gets automatically updated per-action if self.use_actions is true,
    # otherwise it stays the same
    filepath = self.filepath

    with ProgressReport(context.window_manager) as progress:
        actions = []
        if self.use_actions:
            actions = bpy.data.actions
        else:
            actions = [bpy.context.object.animation_data.action]

        progress.enter_substeps(len(actions))

        for action in actions:
            if self.use_actions:
                filename = prefix + action.name + suffix + ".seanim"
                filepath = os.path.normpath(os.path.join(path, filename))

            progress.enter_substeps(1, action.name)
            try:
                export_action(self, context, progress, action, filepath)
            except Exception as e:
                progress.leave_substeps("ERROR: " + repr(e))
            else:
                progress.leave_substeps()

        progress.leave_substeps("Finished!")
def write_file(
        filepath,
        objects,
        scene,
        EXPORT_GLOBAL_MATRIX=None,
        EXPORT_PATH_MODE='AUTO',
        progress=ProgressReport(),
):
    from io_scene_forsaken import forsaken_utils

    if EXPORT_GLOBAL_MATRIX is None:
        EXPORT_GLOBAL_MATRIX = mathutils.Matrix()

    # -----------------------------------------------------------------------------
    # create a new file
    file = open(filepath, "w", encoding="utf8", newline="\n")
    fw = file.write

    fw('// Generated Forsaken Level Data for Kex Engine\n')
    fw('// DO NOT MODIFY!\n\n')

    # -----------------------------------------------------------------------------
    # iterate each scene object
    for i, ob_main in enumerate(objects):
        if ob_main.parent and ob_main.parent.dupli_type in {'VERTS', 'FACES'}:
            continue

        obs = [(ob_main, ob_main.matrix_world)]

        # -----------------------------------------------------------------------------
        # iterate every mesh
        for ob, ob_mat in obs:

            if object_is_actor(ob):
                parse_actor(fw, ob, EXPORT_GLOBAL_MATRIX, scene)
                continue

            name1 = ob.name
            name2 = ob.data.name
            #if name1 == name2:
            #    obnamestring = name_compat(name1)
            #else:
            #    obnamestring = '%s_%s' % (name_compat(name1), name_compat(name2))
            obnamestring = name_compat(name1)

            # -----------------------------------------------------------------------------
            # set the name of this group
            fw('group \"%s\"' % obnamestring)
            fw(' // %i\n' % i)

            axis = get_group_axis(ob, EXPORT_GLOBAL_MATRIX)

            fw('orientation %.6f %.6f %.6f\n' % axis[:])
            fw('waterType %i\n' % get_enum_type(
                bpy.types.Object.groupWaterType, ob.groupWaterType))
            fw('soundDistanceScale %f\n' % ob.groupSoundDistScale)
            fw('caustics_red %f\n' % ob.groupCausticColor[0])
            fw('caustics_green %f\n' % ob.groupCausticColor[1])
            fw('caustics_blue %f\n' % ob.groupCausticColor[2])

            try:
                mesh = ob.to_mesh(scene, True, 'PREVIEW')
            except RuntimeError:
                mesh = None

            if mesh is None:
                continue

            #print('processing group ', ob.name)

            mesh.transform(EXPORT_GLOBAL_MATRIX * ob_mat)
            #forsaken_utils.mesh_triangulate(mesh)

            if not mesh.tessfaces and mesh.polygons:
                mesh.calc_tessface()

            faceuv = len(mesh.uv_textures) > 0
            has_materials = len(mesh.materials) > 0

            if faceuv:
                uv_texture = mesh.uv_textures.active.data[:]
                uv_layer = mesh.uv_layers.active.data[:]

            mesh_verts = mesh.vertices

            has_uv = bool(mesh.tessface_uv_textures)
            has_vcol = bool(mesh.tessface_vertex_colors)

            use_uv_coords = True

            # -----------------------------------------------------------------------------
            # get uv layer
            if has_uv:
                active_uv_layer = mesh.tessface_uv_textures.active
                if not active_uv_layer:
                    has_uv = False
                else:
                    active_uv_layer = active_uv_layer.data

            # -----------------------------------------------------------------------------
            # get color layer
            if has_vcol:
                active_col_layer = mesh.tessface_vertex_colors.active
                if not active_col_layer:
                    has_vcol = False
                else:
                    active_col_layer = active_col_layer.data

            try:
                bpy.ops.object.mode_set(mode='OBJECT')
                scene.objects.active = ob
                me = ob.data
                ob.select = True
                bpy.ops.object.mode_set(mode='EDIT')

                bm = bmesh.from_edit_mesh(me)
                bm.faces.ensure_lookup_table()

                ignoreBspLayer = bm.faces.layers.int.get("ignore_bsp")
                transparentLayer = bm.faces.layers.int.get("transparent")
                animInstanceLayer = bm.faces.layers.string.get("animInstance")

                # -----------------------------------------------------------------------------
                # iterate polygons
                for i, f in enumerate(mesh.polygons):
                    f_verts = f.vertices

                    bFixFace = False

                    # for some bizzare reason, quads referencing vertex indexes of zero results in
                    # the UV and color indexes being in the incorrect order. this will check for this
                    # bug and correct it when writing out the face information
                    for j, vidx in enumerate(f_verts):
                        # check only if zero vertex index is the 3rd or 4th indice
                        if vidx == 0 and j >= 2 and len(f_verts) >= 4:
                            bFixFace = True
                            break

                    if uv_texture[f.index].image is None or has_uv == False:
                        continue

                    if has_uv:
                        uv = active_uv_layer[i]
                        uv = uv.uv1, uv.uv2, uv.uv3, uv.uv4

                    if has_vcol:
                        col = active_col_layer[i]
                        col = col.color1[:], col.color2[:], col.color3[:], col.color4[:]

                    # -----------------------------------------------------------------------------
                    # write out a new face block
                    fw('face %i ' % len(f_verts))
                    fw('\"%s\" ' % uv_texture[f.index].image.filepath)

                    if ignoreBspLayer is not None or transparentLayer is not None or animInstanceLayer is not None:
                        bmf = bm.faces[f.index]
                        if ignoreBspLayer is None:
                            fw('0 ')
                        else:
                            fw('%i ' % bmf[ignoreBspLayer])

                        if transparentLayer is None:
                            fw('0 ')
                        else:
                            fw('%i ' % bmf[transparentLayer])

                        if animInstanceLayer is None:
                            fw('\"\" ')
                        else:
                            fw('\"%s\" ' %
                               bmf[animInstanceLayer].decode("utf-8"))
                    else:
                        fw('0 0 \"\"')

                    fw(' // %i\n' % f.index)
                    fw('{')

                    for j, vidx in enumerate(f_verts):
                        v = mesh_verts[vidx]
                        idx = j

                        if bFixFace:
                            # offset the index to fix the bizzare bug
                            idx = (j + 2) % len(f_verts)

                        if has_uv:
                            uvcoord = uv[idx][0], uv[idx][1]
                        else:
                            uvcoord = 0.0, 0.0

                        if has_vcol:
                            color = col[idx]
                            color = (
                                int(color[0] * 255.0),
                                int(color[1] * 255.0),
                                int(color[2] * 255.0),
                            )
                        else:
                            color = 255, 255, 255

                        fw('\n    %.6f %.6f %.6f ' % v.co[:])
                        fw('%.6f ' % uvcoord[0])
                        fw('%.6f ' % uvcoord[1])
                        fw('%u ' % color[0])
                        fw('%u ' % color[1])
                        fw('%u ' % color[2])
                        fw('// %i' % f_verts[idx])

                    fw('\n}\n\n')

                bpy.ops.object.mode_set(mode='OBJECT')
                ob.select = False

            except RuntimeError:
                file.close()
                return

    file.close()
def load(context, filepath):

    with ProgressReport(context.window_manager) as progress:
        progress.enter_substeps(1, "Importing ADT OBJ %r..." % filepath)

        csvpath = filepath.replace('.obj', '_ModelPlacementInformation.csv')

        # Coordinate setup

        ## WoW coordinate sytem
        # Max Size: 51200 / 3 = 17066,66666666667
        # Map Size: Max Size * 2 = 34133,33333333333
        # ADT Size: Map Size / 64 = 533,3333333333333

        max_size = 51200 / 3
        map_size = max_size * 2
        adt_size = map_size / 64

        base_folder, adtname = os.path.split(filepath)
        adtsplit = adtname.split("_")
        mapname = adtsplit[0]
        map_x = int(adtsplit[1])
        map_y = int(adtsplit[2].replace(".obj", ""))

        print(mapname)
        print(map_x)
        print(map_y)

        offset_x = adt_size * map_x
        offset_y = adt_size * map_y

        print(offset_x)
        print(offset_y)

        # Import ADT
        bpy.ops.import_scene.obj(filepath=filepath)

        adtObject = bpy.data.objects[mapname + '_' + str(map_x) + '_' +
                                     str(map_y)]

        # Make shader sane and fix UV clamping (Kruithne)
        for mat_slot in adtObject.material_slots:
            node_tree = mat_slot.material.node_tree
            nodes = node_tree.nodes
            for node in nodes:
                if node.name != 'Image Texture' and node.name != 'Material Output' and node.name != 'Diffuse BSDF':
                    node_tree.nodes.remove(node)
            node_tree.links.new(nodes['Image Texture'].outputs[0],
                                nodes['Diffuse BSDF'].inputs[0])
            node_tree.links.new(nodes['Diffuse BSDF'].outputs[0],
                                nodes['Material Output'].inputs[0])
            imageNode = nodes['Image Texture']
            imageNode.extension = 'EXTEND'
            imageNode.image.use_alpha = False

        bpy.ops.object.add(type='EMPTY')
        doodadparent = bpy.context.active_object
        doodadparent.parent = adtObject
        doodadparent.name = "Doodads"
        doodadparent.rotation_euler = [0, 0, 0]
        doodadparent.rotation_euler.x = radians(-90)

        bpy.ops.object.add(type='EMPTY')
        wmoparent = bpy.context.active_object
        wmoparent.parent = adtObject
        wmoparent.name = "WMOs"
        wmoparent.rotation_euler = [0, 0, 0]
        wmoparent.rotation_euler.x = radians(-90)
        # Make object active
        # bpy.context.scene.objects.active = obj

        # Read doodad definitions file
        with open(csvpath) as csvfile:
            reader = csv.DictReader(csvfile, delimiter=';')
            for row in reader:
                doodad_path, doodad_filename = os.path.split(filepath)
                newpath = os.path.join(doodad_path, row['ModelFile'])

                if row['Type'] == 'wmo':
                    bpy.ops.object.add(type='EMPTY')
                    parent = bpy.context.active_object
                    parent.name = row['ModelFile']
                    parent.parent = wmoparent
                    parent.location = (17066 - float(row['PositionX']),
                                       (17066 - float(row['PositionZ'])) * -1,
                                       float(row['PositionY']))
                    parent.rotation_euler = [0, 0, 0]
                    #obj.rotation_euler.x += (radians(90 + float(row['RotationX']))) # TODO
                    #obj.rotation_euler.y -= radians(float(row['RotationY']))        # TODO
                    parent.rotation_euler.z = radians(
                        (-90 + float(row['RotationY'])))
                    if row['ScaleFactor']:
                        parent.scale = (float(row['ScaleFactor']),
                                        float(row['ScaleFactor']),
                                        float(row['ScaleFactor']))

                    bpy.ops.import_scene.obj(filepath=newpath)
                    obj_objects = bpy.context.selected_objects[:]

                    # Put ADT rotations in here
                    for obj in obj_objects:
                        obj.parent = parent

                    wmocsvpath = newpath.replace(
                        '.obj', '_ModelPlacementInformation.csv')
                    # Read WMO doodads definitions file
                    with open(wmocsvpath) as wmocsvfile:
                        wmoreader = csv.DictReader(wmocsvfile, delimiter=';')
                        for wmorow in wmoreader:
                            wmodoodad_path, wmodoodad_filename = os.path.split(
                                filepath)
                            wmonewpath = os.path.join(wmodoodad_path,
                                                      wmorow['ModelFile'])
                            # Import the doodad
                            if (os.path.exists(wmonewpath)):
                                bpy.ops.import_scene.obj(filepath=wmonewpath)
                                # Select the imported doodad
                                wmoobj_objects = bpy.context.selected_objects[:]
                                for wmoobj in wmoobj_objects:
                                    # Prepend name
                                    wmoobj.name = "(" + wmorow[
                                        'DoodadSet'] + ") " + wmoobj.name
                                    # Set parent
                                    wmoobj.parent = parent
                                    # Set position
                                    wmoobj.location = (
                                        float(wmorow['PositionX']) * -1,
                                        float(wmorow['PositionY']) * -1,
                                        float(wmorow['PositionZ']))
                                    # Set rotation
                                    rotQuat = Quaternion(
                                        (float(wmorow['RotationW']),
                                         float(wmorow['RotationX']),
                                         float(wmorow['RotationY']),
                                         float(wmorow['RotationZ'])))
                                    rotEul = rotQuat.to_euler()
                                    rotEul.x += radians(90)
                                    rotEul.z += radians(180)
                                    wmoobj.rotation_euler = rotEul
                                    # Set scale
                                    if wmorow['ScaleFactor']:
                                        wmoobj.scale = (
                                            float(wmorow['ScaleFactor']),
                                            float(wmorow['ScaleFactor']),
                                            float(wmorow['ScaleFactor']))

                                    # Duplicate material removal script by Kruithne
                                    # Merge all duplicate materials
                                    # for obj in bpy.context.scene.objects:
                                    #     if obj.type == 'MESH':
                                    #         i = 0
                                    #         for mat_slot in obj.material_slots:
                                    #             mat = mat_slot.material
                                    #             obj.material_slots[i].material = bpy.data.materials[mat.name.split('.')[0]]
                                    #             i += 1

                                    # # Cleanup unused materials
                                    # for img in bpy.data.images:
                                    #     if not img.users:
                                    #         bpy.data.images.remove(img)
                else:
                    if (os.path.exists(newpath)):
                        bpy.ops.import_scene.obj(filepath=newpath)
                        obj_objects = bpy.context.selected_objects[:]
                        for obj in obj_objects:
                            # Set parent
                            obj.parent = doodadparent

                            # Set location
                            obj.location.x = (17066 - float(row['PositionX']))
                            obj.location.y = (17066 -
                                              float(row['PositionZ'])) * -1
                            obj.location.z = float(row['PositionY'])
                            obj.rotation_euler.x += radians(
                                float(row['RotationZ']))
                            obj.rotation_euler.y += radians(
                                float(row['RotationX']))
                            obj.rotation_euler.z = radians(
                                90 + float(row['RotationY']))  # okay

                            # Set scale
                            if row['ScaleFactor']:
                                obj.scale = (float(row['ScaleFactor']),
                                             float(row['ScaleFactor']),
                                             float(row['ScaleFactor']))

        # Set doodad and WMO parent to 0
        wmoparent.location = (0, 0, 0)
        doodadparent.location = (0, 0, 0)

        print("Deduplicating and cleaning up materials!")
        # Duplicate material removal script by Kruithne
        # Merge all duplicate materials
        for obj in bpy.context.scene.objects:
            if obj.type == 'MESH':
                i = 0
                for mat_slot in obj.material_slots:
                    mat = mat_slot.material
                    obj.material_slots[i].material = bpy.data.materials[
                        mat.name.split('.')[0]]
                    i += 1

        # Cleanup unused materials
        for img in bpy.data.images:
            if not img.users:
                bpy.data.images.remove(img)
        progress.leave_substeps("Finished importing: %r" % filepath)

    return {'FINISHED'}
def load(context,
         filepath
         ):

    with ProgressReport(context.window_manager) as progress:
        progress.enter_substeps(1, "Importing WMO OBJ %r..." % filepath)

        csvpath = filepath.replace('.obj', '_ModelPlacementInformation.csv')

        bpy.ops.import_scene.obj(filepath=filepath)

        # Duplicate material removal script by Kruithne
        # Merge all duplicate materials
        for obj in bpy.context.scene.objects:
            if obj.type == 'MESH':
                i = 0
                for mat_slot in obj.material_slots:
                    mat = mat_slot.material
                    obj.material_slots[i].material = bpy.data.materials[mat.name.split('.')[0]]
                    i += 1

        # Cleanup unused materials
        for img in bpy.data.images:
            if not img.users:
                bpy.data.images.remove(img)

        # Select the imported WMO
        obj_objects = bpy.context.selected_objects[:]

        for obj in obj_objects:
            obj.rotation_euler = [0, 0, 0]
            obj.rotation_euler.x += radians(90)
            obj.rotation_euler.z -= radians(90)

        # Read doodad definitions file
        with open(csvpath) as csvfile:
            reader = csv.DictReader(csvfile, delimiter=';')
            for row in reader:
                doodad_path, doodad_filename = os.path.split(filepath)
                newpath = os.path.join(doodad_path, row['ModelFile'])

                # Import the doodad
                bpy.ops.import_scene.obj(filepath=newpath)

                # Select the imported doodad
                obj_objects = bpy.context.selected_objects[:]
                for obj in obj_objects:
                    # Print object name
                    # print (obj.name)

                    # Prepend name
                    obj.name = "(" + row['DoodadSet'] + ") " + obj.name

                    # Set position
                    obj.location = (float(row['PositionY']) * -1, float(row['PositionX']), float(row['PositionZ']))

                    # Set rotation
                    rotQuat = Quaternion((float(row['RotationW']), float(row['RotationX']), float(row['RotationY']), float(row['RotationZ'])))
                    rotEul = rotQuat.to_euler()
                    rotEul.x += radians(90);
                    rotEul.z += radians(90);
                    obj.rotation_euler = rotEul

                    # Set scale
                    if row['ScaleFactor']:
                        obj.scale = (float(row['ScaleFactor']), float(row['ScaleFactor']), float(row['ScaleFactor']))

        # Duplicate material removal script by Kruithne
        # Merge all duplicate materials
        for obj in bpy.context.scene.objects:
            if obj.type == 'MESH':
                i = 0
                for mat_slot in obj.material_slots:
                    mat = mat_slot.material
                    obj.material_slots[i].material = bpy.data.materials[mat.name.split('.')[0]]
                    i += 1

        # Cleanup unused materials
        for img in bpy.data.images:
            if not img.users:
                bpy.data.images.remove(img)

        progress.leave_substeps("Finished importing: %r" % filepath)

    return {'FINISHED'}
Exemple #15
0
    def load(self,
             context,
             filepath,
             *,
             import_skeleton=True,
             skeleton_auto_connect=True,
             import_animations=False,
             scale_factor=1.0,
             use_cycles=True,
             relpath=None,
             global_matrix=None):
        """
        Called by the use interface or another script.
        load_cgf(path) - should give acceptable result.
        This function passes the file and sends the data off
            to be split into objects and then converted into mesh objects
        """

        self.filepath = filepath
        self.armature_auto_connect = skeleton_auto_connect
        self.scale_factor = scale_factor

        if self.filepath.endswith('.caf'):
            self.load_animation()
            return {'FINISHED'}

        with ProgressReport(context.window_manager) as progress:
            progress.enter_substeps(
                1, "Importing CGF %r ... relpath: %r" % (filepath, relpath))

            if global_matrix is None:
                global_matrix = Matrix()

            time_main = time.time()
            b_mats = []

            progress.enter_substeps(1, "Parsing CGF file ...")
            with open(filepath, 'rb') as f:
                data = CgfFormat.Data()
                # check if cgf file is valid
                try:
                    data.inspect_version_only(f)
                except ValueError:
                    # not a cgf file
                    raise
                else:
                    progress.enter_substeps(2, "Reading CGF %r ..." % filepath)
                    data.read(f)

            print('Project root: %s' % self.project_root)

            progress.leave_substeps("Done reading.")
            progress.enter_substeps(3, "Parsing CGF %r ..." % filepath)

            if data.game == 'Crysis':
                print(
                    '[WARNING]: Crysis import is very experimental, and is likely to fail'
                )

            print('game:                    %s' % data.game)
            print('file type:               0x%08X' % data.header.type)
            print('version:                 0x%08X' % data.version)
            print('user version:            0x%08X' % data.user_version)

            for i, chunk in enumerate(data.chunks):
                print('id %i: %s' % (i, chunk.__class__.__name__))

            # TODO: fixed the scale correction
            scale_factor = self.get_global_scale(data)

            for chunk in data.chunks:
                chunk.apply_scale(1.0 / scale_factor)

            # import data
            progress.step("Done, making data into blender")

            progress.step("Done, loading materials and images ...")
            # TODO: create materials

            # Far Cry: iterate over all standard material chunks
            for chunk in data.chunks:
                # check chunk type
                if not isinstance(chunk, CgfFormat.MtlChunk):
                    continue

                # multi material: skip
                if chunk.children or to_str(chunk.name).startswith('s_nouvmap') \
                        or chunk.type != CgfFormat.MtlType.STANDARD \
                        or self.get_material_name(chunk.name) is None:
                    continue

                # single material
                b_mats.append((self.create_std_material(chunk,
                                                        use_cycles=use_cycles),
                               self.is_material_nodraw(chunk.name)))

            # Deselect all
            if bpy.ops.object.select_all.poll():
                bpy.ops.object.select_all(action="DESELECT")

            scene = context.scene
            new_objects = {}  # put new objects here
            armature_chunk = None
            node_transforms = {}

            # SPLIT_OB_OR_GROUP = bool(use_split_objects or use_split_groups)
            # Create meshes from the data, warning 'vertex_groups' wont suppot splitting
            #~ print(dataname, user_vnor, use_vtex)

            # parse bone list first.
            for chunk in data.chunks:
                if isinstance(chunk, CgfFormat.BoneNameListChunk):
                    self.parse_bone_name_list(chunk)

            # parse bone data
            for chunk in data.chunks:
                if isinstance(chunk, CgfFormat.BoneAnimChunk):
                    self.build_bone_infos(chunk)
                elif isinstance(chunk, CgfFormat.BoneInitialPosChunk):
                    self.process_bone_initial_position(chunk)

            for chunk in data.chunks:
                if isinstance(chunk, CgfFormat.NodeChunk) and isinstance(
                        chunk.object, CgfFormat.MeshChunk):
                    self.dataname = to_str(chunk.name)
                    self.create_mesh(
                        new_objects,
                        chunk.object,
                        b_mats,
                        self.dataname,
                    )
                    node_transforms[chunk.object] = Matrix(
                        chunk.transform.as_tuple()).transposed()
                    self.mapping_vertex_group_weights(new_objects)

                elif import_skeleton and isinstance(chunk,
                                                    CgfFormat.BoneAnimChunk):
                    self.create_armatures(chunk,
                                          new_objects,
                                          scale_factor=scale_factor)

            # create new obj
            for (chk, obj) in new_objects.items():
                if obj not in scene.objects.values():
                    scene.objects.link(obj)
                # we could apply this anywhere before scaling
                node_transform = node_transforms[
                    chk] if chk in node_transforms else None
                print('Node transform: %s' % node_transform)
                obj.matrix_world = global_matrix
                if node_transform:
                    obj.matrix_world = obj.matrix_world * node_transform
                print('Apply obj %s\' matrix world.' % obj)

            scene.update()

            for i in scene.objects:
                i.select = False  # deselect all objects

            # Deselect all
            if bpy.ops.object.select_all.poll():
                bpy.ops.object.select_all(action="DESELECT")

            if len(new_objects):
                for obj in new_objects.values():
                    if obj.type == 'ARMATURE':
                        obj.select = True
                        scene.objects.active = obj
                        break

            progress.leave_substeps("Done ...")

            if import_animations:
                progress.enter_substeps(
                    4,
                    "Import animations by searching Cry action list file (CAL) ..."
                )
                self.load_animations()
                progress.leave_substeps("Done, imported animations ...")

            progress.leave_substeps("Finished importing CGF %r ..." % filepath)

        return {'FINISHED'}
def load(context, filepath):

    with ProgressReport(context.window_manager) as progress:
        progress.enter_substeps(1, "Importing ADT OBJ %r..." % filepath)

        csvpath = filepath.replace('.obj', '_ModelPlacementInformation.csv')

        # Coordinate setup

        ## WoW coordinate sytem
        # Max Size: 51200 / 3 = 17066,66666666667
        # Map Size: Max Size * 2 = 34133,33333333333
        # ADT Size: Map Size / 64 = 533,3333333333333

        max_size = 51200 / 3
        map_size = max_size * 2
        adt_size = map_size / 64

        base_folder, adtname = os.path.split(filepath)
        adtsplit = adtname.split("_")
        mapname = adtsplit[0]
        map_x = int(adtsplit[1])
        map_y = int(adtsplit[2].replace(".obj", ""))

        print(mapname)
        print(map_x)
        print(map_y)

        offset_x = adt_size * map_x
        offset_y = adt_size * map_y

        print(offset_x)
        print(offset_y)

        # Import ADT
        bpy.ops.import_scene.obj(filepath=filepath)

        # Select the imported doodad
        obj = bpy.context.object

        # Make object active
        # bpy.context.scene.objects.active = obj

        # Read doodad definitions file
        with open(csvpath) as csvfile:
            reader = csv.DictReader(csvfile, delimiter=';')
            for row in reader:
                doodad_path, doodad_filename = os.path.split(filepath)
                newpath = os.path.join(doodad_path, row['ModelFile'])

                # Import the doodad
                bpy.ops.import_scene.obj(filepath=newpath)

                # Select the imported doodad
                obj = bpy.context.object

                # Make object active
                # bpy.context.scene.objects.active = obj

                # Set position
                # WARNING: WoW world coordinates, are Y and Z swapped?
                obj.location = (float(row['PositionX']) - offset_x,
                                float(row['PositionY']),
                                float(row['PositionZ']) - offset_y)

                print(float(row['PositionX']) - offset_x)
                print(obj.location[0])

                # Set scale
                if row['ScaleFactor']:
                    obj.scale = (float(row['ScaleFactor']),
                                 float(row['ScaleFactor']),
                                 float(row['ScaleFactor']))

                print(obj.scale[0])

                #break
                #print(newpath)
                #print(row['ModelFile'], row['PositionX'])
        #file = open(newpath, "r")
#
#for line in file:
#    print(line)
#    splitted_line = line.split(";")
#
#    modelname = splitted_line[0]
#    type(modelname)
#    position_x = float(splitted_line[1])
#    type(position_x)
#    position_y = float(splitted_line[2])
#    position_z = float(splitted_line[3])
#    rotation_x = float(splitted_line[4])
#    rotation_y = float(splitted_line[5])
#    rotation_z = float(splitted_line[6])
#    scale = float(splitted_line[7])
#    modelid = int(splitted_line[8])
#    type(modelid)
#
#    print ("Model name: %r, POS: %f %f %f, ROT: %f %f %f, Scale: %f, ModelID: %d" % (modelname, position_x, position_y, position_z, rotation_x, rotation_y, rotation_z, scale, modelid))
#file.close()

        progress.leave_substeps("Finished importing: %r" % filepath)

    return {'FINISHED'}
    def write(self, filepath):
        """
        This function starts the exporting. It defines a few "globals" as class members, notably the total_* variables
        It loops through objects, writing each to .objex (with the write_object method), and collecting materials/armatures/animations as it goes.
        Once the .objex is finished being written, write_mtl is called to write the .mtl and same thing with write_anim which writes .anim and itself calls .skel which writes .skel
        """
        log = self.log
        self.filepath = filepath
        with ProgressReport(self.context.window_manager) as progress:
            scene = self.context.scene

            # Exit edit mode before exporting, so current object states are exported properly.
            if bpy.ops.object.mode_set.poll():
                bpy.ops.object.mode_set(mode='OBJECT')

            # EXPORT THE FILE.
            progress.enter_substeps(1)
            
            with ProgressReportSubstep(progress, 3, "Objex Export path: %r" % filepath, "Objex Export Finished") as subprogress1:
                with open(filepath, "w", encoding="utf8", newline="\n") as f:
                    self.fw_objex = f.write

                    # write leading comments, mtllib/animlib/skellib directives, and defines filepath_* to write .mtl/... to
                    self.write_header()

                    # Initialize totals, these are updated each object
                    self.total_vertex = self.total_uv = self.total_normal = self.total_vertex_color = 1

                    # A Dict of Materials
                    # "materials" here refer to a material + face image pair, where either or both may be unset
                    # (material, image): (name, name_q, material, face_image)
                    # name_q = util.quote(name)
                    self.mtl_dict = {}

                    copy_set = set()

                    self.armatures = []
                    
                    # Get all meshes
                    subprogress1.enter_substeps(len(self.objects))
                    for ob_main in self.objects:
                        # 421todo I don't know what this dupli stuff is about
                        # ("instancer" stuff in 2.80+)
                        use_old_dupli = hasattr(ob_main, 'dupli_type') # True in < 2.80
                        # ignore dupli children
                        if (ob_main.parent
                            and (ob_main.parent.dupli_type if use_old_dupli else ob_main.parent.instance_type)
                                    in {'VERTS', 'FACES'}
                        ):
                            subprogress1.step("Ignoring %s, dupli child..." % ob_main.name)
                            continue

                        obs = [(ob_main, ob_main.matrix_world)]
                        added_dupli_children = True
                        if use_old_dupli and ob_main.dupli_type != 'NONE':
                            # XXX
                            log.info('creating dupli_list on {}', ob_main.name)
                            ob_main.dupli_list_create(scene)

                            obs += [(dob.object, dob.matrix) for dob in ob_main.dupli_list]
                        elif not use_old_dupli and ob_main.is_instancer:
                            # evaluated_depsgraph_get may be called in-between this line executing,
                            # ie in write_object when evaluating mesh data, so call it again every time here
                            depsgraph = self.context.evaluated_depsgraph_get()
                            obs += [(dup.instance_object.original, dup.matrix_world.copy())
                                    for dup in depsgraph.object_instances
                                    if dup.parent and dup.parent.original == ob_main]
                            del depsgraph
                        else:
                            added_dupli_children = False
                        if added_dupli_children:
                            log.debug('{} has {:d} dupli children', ob_main.name, len(obs) - 1)

                        subprogress1.enter_substeps(len(obs))
                        for ob, ob_mat in obs:
                            self.write_object(subprogress1, ob, ob_mat)

                        if use_old_dupli and ob_main.dupli_type != 'NONE':
                            ob_main.dupli_list_clear()
                        elif not use_old_dupli:
                            pass # no clean-up needed

                        subprogress1.leave_substeps("Finished writing geometry of '%s'." % ob_main.name)
                    subprogress1.leave_substeps()

                del self.fw_objex
                
                subprogress1.step("Finished exporting geometry, now exporting materials")

                # Now we have all our materials, save them
                if self.options['EXPORT_MTL']:
                    def append_header_mtl(fw_mtl):
                        fw_mtl(self.export_id_line)
                    export_objex_mtl.write_mtl(scene, self.filepath_mtl, append_header_mtl, self.options, copy_set, self.mtl_dict)
                
                subprogress1.step("Finished exporting materials, now exporting skeletons/animations")

                # save gathered skeletons and animations
                if self.options['EXPORT_SKEL']:
                    log.info('now exporting skeletons')
                    skelfile = None
                    animfile = None
                    try:
                        skelfile = open(self.filepath_skel, "w", encoding="utf8", newline="\n")
                        skelfile_write = skelfile.write
                        skelfile_write(self.export_id_line)
                        link_anim_basepath = None
                        if self.options['EXPORT_ANIM']:
                            log.info(' ... and animations')
                            animfile = open(self.filepath_anim, "w", encoding="utf8", newline="\n")
                            animfile_write = animfile.write
                            animfile_write(self.export_id_line)
                            if self.options['EXPORT_LINK_ANIM_BIN']:
                                log.info(' ... and Link animation binaries')
                                link_anim_basepath = self.filepath_linkbase
                        else:
                            animfile_write = None
                        export_objex_anim.write_armatures(skelfile_write, animfile_write, 
                            scene, self.options['GLOBAL_MATRIX'], self.armatures, 
                            link_anim_basepath, self.options['LINK_BIN_SCALE'])
                    finally:
                        if skelfile:
                            skelfile.close()
                        if animfile:
                            animfile.close()
                
                # copy all collected files.
                bpy_extras.io_utils.path_reference_copy(copy_set)

            progress.leave_substeps()
Exemple #18
0
def _create_material(progress: ProgressReport, manager: ImportManager,
                     material: gltftypes.Material) -> bpy.types.Material:
    blender_material = bpy.data.materials.new(material.name)
    blender_material['js'] = json.dumps(material.js, indent=2)

    blender_material.use_nodes = True
    tree = blender_material.node_tree

    tree.nodes.remove(tree.nodes['Principled BSDF'])

    getLogger('').disabled = True
    groups = blender_groupnode_io.import_groups(gltf_pbr_node.groups)
    getLogger('').disabled = False

    bsdf = tree.nodes.new('ShaderNodeGroup')
    bsdf.node_tree = groups['glTF Metallic Roughness']

    tree.links.new(bsdf.outputs['Shader'],
                   tree.nodes['Material Output'].inputs['Surface'])

    def create_image_node(texture_index: int):
        # uv => tex
        image_node = tree.nodes.new(type='ShaderNodeTexImage')
        image_node.image = manager.textures[texture_index]
        tree.links.new(
            tree.nodes.new('ShaderNodeTexCoord').outputs['UV'],
            image_node.inputs['Vector'])
        return image_node

    def bsdf_link_image(texture_index: int, input_name: str):
        texture = create_image_node(texture_index)
        tree.links.new(texture.outputs["Color"], bsdf.inputs[input_name])

    if material.normalTexture:
        bsdf_link_image(material.normalTexture.index, 'Normal')

    if material.occlusionTexture:
        bsdf_link_image(material.occlusionTexture.index, 'Occlusion')

    if material.emissiveTexture:
        bsdf_link_image(material.emissiveTexture.index, 'Emissive')

    pbr = material.pbrMetallicRoughness
    if pbr:
        if pbr.baseColorTexture and pbr.baseColorFactor:
            # mix
            mix = tree.nodes.new(type='ShaderNodeMixRGB')
            mix.blend_type = 'MULTIPLY'
            mix.inputs[2].default_value = pbr.baseColorFactor

        elif pbr.baseColorTexture:
            bsdf_link_image(pbr.baseColorTexture.index, 'BaseColor')
        else:
            # factor
            pass

        if pbr.metallicRoughnessTexture:
            bsdf_link_image(pbr.metallicRoughnessTexture.index,
                            'MetallicRoughness')

    progress.step()
    return blender_material
Exemple #19
0
def write_file(context,
               filepath,
               objects,
               scene,
               provides_mtl,
               progress=ProgressReport()):
    # bpy.ops.object.select_all(action='DESELECT')

    with ProgressReportSubstep(progress, 2, "JSON export path: %r" % filepath,
                               "JSON export finished") as subprogress1:
        with open(filepath, "w", encoding="utf8", newline="\n") as f:
            limbs = {'anchor': {'opacity': 0}}
            pose = {}

            for obj in objects:
                if obj.type != "MESH":
                    continue

                name1 = obj.name
                name2 = obj.data.name

                if name1 == name2:
                    name = name_compat(name1)
                else:
                    name = '%s_%s' % (name_compat(name1), name_compat(name2))

                cursor = obj.matrix_world.translation
                x = cursor[0]
                y = cursor[2]
                z = cursor[1]

                limb = {
                    'origin': [x, y, -z],
                    'smooth': True,
                    'parent': 'anchor'
                }

                transform = {'translate': [x * 16, y * 16, z * 16]}

                # Some automatic setup of limbs based on name
                if name1 == 'head':
                    limb['looking'] = True
                elif name1 == 'left_arm':
                    limb['holding'] = 'left'
                    limb['swinging'] = True
                    limb['idle'] = True
                    limb['invert'] = True
                elif name1 == 'right_arm':
                    limb['holding'] = 'right'
                    limb['swinging'] = True
                    limb['idle'] = True
                    limb['swiping'] = True
                elif name1 == 'right_leg':
                    limb['swinging'] = True
                    limb['invert'] = True
                elif name1 == 'left_leg':
                    limb['swinging'] = True

                limbs[name] = limb
                pose[name] = transform

            # Write JSON to the file
            pose = {'size': [0.6, 1.8, 0.6], 'limbs': pose}

            data = {
                'scheme': "1.3",
                'providesObj': True,
                'providesMtl': provides_mtl,
                'name': path_leaf(filepath),
                'limbs': limbs,
                'poses': {
                    'standing': pose,
                    'sneaking': pose,
                    'sleeping': pose,
                    'flying': pose
                }
            }

            f.write(json.dumps(data, indent=4))

        subprogress1.step("Finished exporting JSON")
Exemple #20
0
def write_file(
        filepath,
        objects,
        scene,
        EXPORT_TRI=False,
        EXPORT_EDGES=False,
        EXPORT_SMOOTH_GROUPS=False,
        EXPORT_SMOOTH_GROUPS_BITFLAGS=False,
        EXPORT_NORMALS=False,
        EXPORT_UV=True,
        EXPORT_MTL=True,
        EXPORT_APPLY_MODIFIERS=True,
        EXPORT_BLEN_OBS=True,
        EXPORT_GROUP_BY_OB=False,
        EXPORT_GROUP_BY_MAT=False,
        EXPORT_KEEP_VERT_ORDER=False,
        EXPORT_POLYGROUPS=False,
        EXPORT_CURVE_AS_NURBS=True,
        EXPORT_GLOBAL_MATRIX=None,
        EXPORT_RELATIVE_PATH="",
        EXPORT_PATH_MODE='AUTO',
        progress=ProgressReport(),
):
    """
    Basic write function. The context and options must be already set
    This can be accessed externaly
    eg.
    write( 'c:\\test\\foobar.obj', Blender.Object.GetSelected() ) # Using default options.
    """
    if EXPORT_GLOBAL_MATRIX is None:
        EXPORT_GLOBAL_MATRIX = mathutils.Matrix()

    def veckey3d(v):
        return round(v.x, 4), round(v.y, 4), round(v.z, 4)

    def veckey2d(v):
        return round(v[0], 4), round(v[1], 4)

    def findVertexGroupName(face, vWeightMap):
        """
        Searches the vertexDict to see what groups is assigned to a given face.
        We use a frequency system in order to sort out the name because a given vetex can
        belong to two or more groups at the same time. To find the right name for the face
        we list all the possible vertex group names with their frequency and then sort by
        frequency in descend order. The top element is the one shared by the highest number
        of vertices is the face's group
        """
        weightDict = {}
        for vert_index in face.vertices:
            vWeights = vWeightMap[vert_index]
            for vGroupName, weight in vWeights:
                weightDict[vGroupName] = weightDict.get(vGroupName,
                                                        0.0) + weight

        if weightDict:
            return max((weight, vGroupName)
                       for vGroupName, weight in weightDict.items())[1]
        else:
            return '(null)'

    with ProgressReportSubstep(progress, 2, "OBJ Export path: %r" % filepath,
                               "OBJ Export Finished") as subprogress1:
        with open(filepath, "w", encoding="utf8", newline="\n") as f:
            fw = f.write

            # Write Header
            fw('# Blender v%s OBJ File: %r\n' %
               (bpy.app.version_string, os.path.basename(bpy.data.filepath)))
            fw('# www.blender.org\n')

            # Tell the obj file what material file to use.
            if EXPORT_MTL:
                mtlfilepath = os.path.splitext(filepath)[0] + ".mtl"
                # filepath can contain non utf8 chars, use repr
                fw('mtllib %s\n' % repr(os.path.basename(mtlfilepath))[1:-1])

            # Initialize totals, these are updated each object
            totverts = totuvco = totno = 1

            face_vert_index = 1

            # A Dict of Materials
            # (material.name, image.name):matname_imagename # matname_imagename has gaps removed.
            mtl_dict = {}
            # Used to reduce the usage of matname_texname materials, which can become annoying in case of
            # repeated exports/imports, yet keeping unique mat names per keys!
            # mtl_name: (material.name, image.name)
            mtl_rev_dict = {}

            copy_set = set()

            # Get all meshes
            subprogress1.enter_substeps(len(objects))
            for i, ob_main in enumerate(objects):
                # ignore dupli children
                if ob_main.parent and ob_main.parent.dupli_type in {
                        'VERTS', 'FACES'
                }:
                    # XXX
                    subprogress1.step("Ignoring %s, dupli child..." %
                                      ob_main.name)
                    continue

                obs = [(ob_main, ob_main.matrix_world)]
                if ob_main.dupli_type != 'NONE':
                    # XXX
                    print('creating dupli_list on', ob_main.name)
                    ob_main.dupli_list_create(scene)

                    obs += [(dob.object, dob.matrix)
                            for dob in ob_main.dupli_list]

                    # XXX debug print
                    print(ob_main.name, 'has', len(obs) - 1, 'dupli children')

                subprogress1.enter_substeps(len(obs))
                for ob, ob_mat in obs:
                    with ProgressReportSubstep(subprogress1,
                                               6) as subprogress2:
                        uv_unique_count = no_unique_count = 0

                        # Nurbs curve support
                        if EXPORT_CURVE_AS_NURBS and test_nurbs_compat(ob):
                            ob_mat = EXPORT_GLOBAL_MATRIX * ob_mat
                            totverts += write_nurb(fw, ob, ob_mat)
                            continue
                        # END NURBS

                        try:
                            me = ob.to_mesh(scene,
                                            EXPORT_APPLY_MODIFIERS,
                                            'PREVIEW',
                                            calc_tessface=False)
                        except RuntimeError:
                            me = None

                        if me is None:
                            continue

                        me.transform(EXPORT_GLOBAL_MATRIX * ob_mat)

                        if EXPORT_TRI:
                            # _must_ do this first since it re-allocs arrays
                            mesh_triangulate(me)

                        if EXPORT_UV:
                            faceuv = len(me.uv_textures) > 0
                            if faceuv:
                                uv_texture = me.uv_textures.active.data[:]
                                uv_layer = me.uv_layers.active.data[:]
                        else:
                            faceuv = False

                        me_verts = me.vertices[:]

                        # Make our own list so it can be sorted to reduce context switching
                        face_index_pairs = [
                            (face, index)
                            for index, face in enumerate(me.polygons)
                        ]
                        # faces = [ f for f in me.tessfaces ]

                        if EXPORT_EDGES:
                            edges = me.edges
                        else:
                            edges = []

                        if not (len(face_index_pairs) + len(edges) +
                                len(me.vertices)
                                ):  # Make sure there is something to write
                            # clean up
                            bpy.data.meshes.remove(me)
                            continue  # dont bother with this mesh.

                        if EXPORT_NORMALS and face_index_pairs:
                            me.calc_normals_split()
                            # No need to call me.free_normals_split later, as this mesh is deleted anyway!

                        loops = me.loops

                        if (EXPORT_SMOOTH_GROUPS
                                or EXPORT_SMOOTH_GROUPS_BITFLAGS
                            ) and face_index_pairs:
                            smooth_groups, smooth_groups_tot = me.calc_smooth_groups(
                                EXPORT_SMOOTH_GROUPS_BITFLAGS)
                            if smooth_groups_tot <= 1:
                                smooth_groups, smooth_groups_tot = (), 0
                        else:
                            smooth_groups, smooth_groups_tot = (), 0

                        materials = me.materials[:]
                        material_names = [
                            m.name if m else None for m in materials
                        ]

                        # avoid bad index errors
                        if not materials:
                            materials = [None]
                            material_names = [name_compat(None)]

                        # Sort by Material, then images
                        # so we dont over context switch in the obj file.
                        if EXPORT_KEEP_VERT_ORDER:
                            pass
                        else:
                            if faceuv:
                                if smooth_groups:
                                    sort_func = lambda a: (
                                        a[0].material_index,
                                        hash(uv_texture[a[1]].image
                                             ), smooth_groups[a[1]]
                                        if a[0].use_smooth else False)
                                else:
                                    sort_func = lambda a: (a[0].material_index,
                                                           hash(uv_texture[a[
                                                               1]].image), a[0]
                                                           .use_smooth)
                            elif len(materials) > 1:
                                if smooth_groups:
                                    sort_func = lambda a: (a[
                                        0].material_index, smooth_groups[a[
                                            1]] if a[0].use_smooth else False)
                                else:
                                    sort_func = lambda a: (a[0].material_index,
                                                           a[0].use_smooth)
                            else:
                                # no materials
                                if smooth_groups:
                                    sort_func = lambda a: smooth_groups[a[
                                        1] if a[0].use_smooth else False]
                                else:
                                    sort_func = lambda a: a[0].use_smooth

                            face_index_pairs.sort(key=sort_func)

                            del sort_func

                        # Set the default mat to no material and no image.
                        contextMat = 0, 0  # Can never be this, so we will label a new material the first chance we get.
                        contextSmooth = None  # Will either be true or false,  set bad to force initialization switch.

                        if EXPORT_BLEN_OBS or EXPORT_GROUP_BY_OB:
                            name1 = ob.name
                            name2 = ob.data.name
                            if name1 == name2:
                                obnamestring = name_compat(name1)
                            else:
                                obnamestring = '%s_%s' % (name_compat(name1),
                                                          name_compat(name2))

                            if EXPORT_BLEN_OBS:
                                fw('o %s\n' %
                                   obnamestring)  # Write Object name
                            else:  # if EXPORT_GROUP_BY_OB:
                                fw('g %s\n' % obnamestring)

                        subprogress2.step()

                        # Vert
                        for v in me_verts:
                            fw('v %.6f %.6f %.6f\n' % v.co[:])

                        subprogress2.step()

                        # UV
                        if faceuv:
                            # in case removing some of these dont get defined.
                            uv = f_index = uv_index = uv_key = uv_val = uv_ls = None

                            uv_face_mapping = [None] * len(face_index_pairs)

                            uv_dict = {}
                            uv_get = uv_dict.get
                            for f, f_index in face_index_pairs:
                                uv_ls = uv_face_mapping[f_index] = []
                                for uv_index, l_index in enumerate(
                                        f.loop_indices):
                                    uv = uv_layer[l_index].uv
                                    # include the vertex index in the key so we don't share UV's between vertices,
                                    # allowed by the OBJ spec but can cause issues for other importers, see: T47010.

                                    # this works too, shared UV's for all verts
                                    #~ uv_key = veckey2d(uv)
                                    uv_key = loops[
                                        l_index].vertex_index, veckey2d(uv)

                                    uv_val = uv_get(uv_key)
                                    if uv_val is None:
                                        uv_val = uv_dict[
                                            uv_key] = uv_unique_count
                                        fw('vt %.4f %.4f\n' % uv[:])
                                        uv_unique_count += 1
                                    uv_ls.append(uv_val)

                            del uv_dict, uv, f_index, uv_index, uv_ls, uv_get, uv_key, uv_val
                            # Only need uv_unique_count and uv_face_mapping

                        subprogress2.step()

                        # NORMAL, Smooth/Non smoothed.
                        if EXPORT_NORMALS:
                            no_key = no_val = None
                            normals_to_idx = {}
                            no_get = normals_to_idx.get
                            loops_to_normals = [0] * len(loops)
                            for f, f_index in face_index_pairs:
                                for l_idx in f.loop_indices:
                                    no_key = veckey3d(loops[l_idx].normal)
                                    no_val = no_get(no_key)
                                    if no_val is None:
                                        no_val = normals_to_idx[
                                            no_key] = no_unique_count
                                        fw('vn %.4f %.4f %.4f\n' % no_key)
                                        no_unique_count += 1
                                    loops_to_normals[l_idx] = no_val
                            del normals_to_idx, no_get, no_key, no_val
                        else:
                            loops_to_normals = []

                        if not faceuv:
                            f_image = None

                        subprogress2.step()

                        # XXX
                        if EXPORT_POLYGROUPS:
                            # Retrieve the list of vertex groups
                            vertGroupNames = ob.vertex_groups.keys()
                            if vertGroupNames:
                                currentVGroup = ''
                                # Create a dictionary keyed by face id and listing, for each vertex, the vertex groups it belongs to
                                vgroupsMap = [[]
                                              for _i in range(len(me_verts))]
                                for v_idx, v_ls in enumerate(vgroupsMap):
                                    v_ls[:] = [(vertGroupNames[g.group],
                                                g.weight)
                                               for g in me_verts[v_idx].groups]

                        for f, f_index in face_index_pairs:
                            f_smooth = f.use_smooth
                            if f_smooth and smooth_groups:
                                f_smooth = smooth_groups[f_index]
                            f_mat = min(f.material_index, len(materials) - 1)

                            if faceuv:
                                tface = uv_texture[f_index]
                                f_image = tface.image

                            # MAKE KEY
                            if faceuv and f_image:  # Object is always true.
                                key = material_names[f_mat], f_image.name
                            else:
                                key = material_names[
                                    f_mat], None  # No image, use None instead.

                            # Write the vertex group
                            if EXPORT_POLYGROUPS:
                                if vertGroupNames:
                                    # find what vertext group the face belongs to
                                    vgroup_of_face = findVertexGroupName(
                                        f, vgroupsMap)
                                    if vgroup_of_face != currentVGroup:
                                        currentVGroup = vgroup_of_face
                                        fw('g %s\n' % vgroup_of_face)

                            # CHECK FOR CONTEXT SWITCH
                            if key == contextMat:
                                pass  # Context already switched, dont do anything
                            else:
                                if key[0] is None and key[1] is None:
                                    # Write a null material, since we know the context has changed.
                                    if EXPORT_GROUP_BY_MAT:
                                        # can be mat_image or (null)
                                        fw("g %s_%s\n" %
                                           (name_compat(ob.name),
                                            name_compat(ob.data.name)))
                                    if EXPORT_MTL:
                                        fw("usemtl (null)\n")  # mat, image

                                else:
                                    mat_data = mtl_dict.get(key)
                                    if not mat_data:
                                        # First add to global dict so we can export to mtl
                                        # Then write mtl

                                        # Make a new names from the mat and image name,
                                        # converting any spaces to underscores with name_compat.

                                        # If none image dont bother adding it to the name
                                        # Try to avoid as much as possible adding texname (or other things)
                                        # to the mtl name (see [#32102])...
                                        mtl_name = "%s" % name_compat(key[0])
                                        if mtl_rev_dict.get(
                                                mtl_name,
                                                None) not in {key, None}:
                                            if key[1] is None:
                                                tmp_ext = "_NONE"
                                            else:
                                                tmp_ext = "_%s" % name_compat(
                                                    key[1])
                                            i = 0
                                            while mtl_rev_dict.get(
                                                    mtl_name + tmp_ext,
                                                    None) not in {key, None}:
                                                i += 1
                                                tmp_ext = "_%3d" % i
                                            mtl_name += tmp_ext
                                        mat_data = mtl_dict[
                                            key] = mtl_name, materials[
                                                f_mat], f_image
                                        mtl_rev_dict[mtl_name] = key

                                    if EXPORT_GROUP_BY_MAT:
                                        # can be mat_image or (null)
                                        fw("g %s_%s_%s\n" % (name_compat(
                                            ob.name), name_compat(
                                                ob.data.name), mat_data[0]))
                                    if EXPORT_MTL:
                                        fw("usemtl %s\n" % mat_data[0]
                                           )  # can be mat_image or (null)

                            contextMat = key
                            if f_smooth != contextSmooth:
                                if f_smooth:  # on now off
                                    if smooth_groups:
                                        f_smooth = smooth_groups[f_index]
                                        fw('s %d\n' % f_smooth)
                                    else:
                                        fw('s 1\n')
                                else:  # was off now on
                                    fw('s off\n')
                                contextSmooth = f_smooth

                            f_v = [(vi, me_verts[v_idx], l_idx)
                                   for vi, (v_idx, l_idx) in enumerate(
                                       zip(f.vertices, f.loop_indices))]

                            fw('f')
                            if faceuv:
                                if EXPORT_NORMALS:
                                    for vi, v, li in f_v:
                                        fw(" %d/%d/%d" % (
                                            totverts + v.index,
                                            totuvco +
                                            uv_face_mapping[f_index][vi],
                                            totno + loops_to_normals[li],
                                        ))  # vert, uv, normal
                                else:  # No Normals
                                    for vi, v, li in f_v:
                                        fw(" %d/%d" % (
                                            totverts + v.index,
                                            totuvco +
                                            uv_face_mapping[f_index][vi],
                                        ))  # vert, uv

                                face_vert_index += len(f_v)

                            else:  # No UV's
                                if EXPORT_NORMALS:
                                    for vi, v, li in f_v:
                                        fw(" %d//%d" %
                                           (totverts + v.index,
                                            totno + loops_to_normals[li]))
                                else:  # No Normals
                                    for vi, v, li in f_v:
                                        fw(" %d" % (totverts + v.index))

                            fw('\n')

                        subprogress2.step()

                        # Write edges.
                        if EXPORT_EDGES:
                            for ed in edges:
                                if ed.is_loose:
                                    fw('l %d %d\n' %
                                       (totverts + ed.vertices[0],
                                        totverts + ed.vertices[1]))

                        # Make the indices global rather then per mesh
                        totverts += len(me_verts)
                        totuvco += uv_unique_count
                        totno += no_unique_count

                        # clean up
                        bpy.data.meshes.remove(me)

                if ob_main.dupli_type != 'NONE':
                    ob_main.dupli_list_clear()

                subprogress1.leave_substeps(
                    "Finished writing geometry of '%s'." % ob_main.name)
            subprogress1.leave_substeps()

        subprogress1.step(
            "Finished exporting geometry, now exporting materials")

        # Now we have all our materials, save them
        if EXPORT_MTL:
            write_mtl(scene, mtlfilepath, EXPORT_PATH_MODE, copy_set, mtl_dict,
                      EXPORT_RELATIVE_PATH)

        # copy all collected files.
        bpy_extras.io_utils.path_reference_copy(copy_set)
def load(context, filepath):

    with ProgressReport(context.window_manager) as progress:
        progress.enter_substeps(1, "Importing ADT OBJ %r..." % filepath)

        csvpath = filepath.replace('.obj', '_ModelPlacementInformation.csv')

        # Coordinate setup

        ## WoW coordinate sytem
        # Max Size: 51200 / 3 = 17066,66666666667
        # Map Size: Max Size * 2 = 34133,33333333333
        # ADT Size: Map Size / 64 = 533,3333333333333

        max_size = 51200 / 3
        map_size = max_size * 2
        adt_size = map_size / 64

        base_folder, adtname = os.path.split(filepath)
        adtsplit = adtname.split("_")
        mapname = adtsplit[0]
        map_x = int(adtsplit[1])
        map_y = int(adtsplit[2].replace(".obj", ""))

        print(mapname)
        print(map_x)
        print(map_y)

        offset_x = adt_size * map_x
        offset_y = adt_size * map_y

        print(offset_x)
        print(offset_y)

        # Import ADT
        bpy.ops.import_scene.obj(filepath=filepath)

        bpy.ops.object.add(type='EMPTY')
        doodadparent = bpy.context.active_object
        doodadparent.parent = bpy.data.objects[mapname + '_' + str(map_x) +
                                               '_' + str(map_y)]
        doodadparent.name = "Doodads"
        doodadparent.rotation_euler = [0, 0, 0]
        doodadparent.rotation_euler.x = radians(-90)

        bpy.ops.object.add(type='EMPTY')
        wmoparent = bpy.context.active_object
        wmoparent.parent = bpy.data.objects[mapname + '_' + str(map_x) + '_' +
                                            str(map_y)]
        wmoparent.name = "WMOs"
        wmoparent.rotation_euler = [0, 0, 0]
        wmoparent.rotation_euler.x = radians(-90)
        # Make object active
        # bpy.context.scene.objects.active = obj

        # Read doodad definitions file
        with open(csvpath) as csvfile:
            reader = csv.DictReader(csvfile, delimiter=';')
            for row in reader:
                doodad_path, doodad_filename = os.path.split(filepath)
                newpath = os.path.join(doodad_path, row['ModelFile'])

                if row['Type'] == 'wmo':
                    bpy.ops.object.add(type='EMPTY')
                    parent = bpy.context.active_object
                    parent.name = row['ModelFile']
                    parent.parent = wmoparent
                    parent.location = (17066 - float(row['PositionX']),
                                       (17066 - float(row['PositionZ'])) * -1,
                                       float(row['PositionY']))
                    parent.rotation_euler = [0, 0, 0]
                    #obj.rotation_euler.x += (radians(90 + float(row['RotationX']))) # TODO
                    #obj.rotation_euler.y -= radians(float(row['RotationY']))        # TODO
                    parent.rotation_euler.z = radians(
                        (-90 + float(row['RotationY'])))

                    bpy.ops.import_scene.obj(filepath=newpath)
                    obj_objects = bpy.context.selected_objects[:]

                    # Put ADT rotations in here
                    for obj in obj_objects:
                        obj.parent = parent

                    wmocsvpath = newpath.replace(
                        '.obj', '_ModelPlacementInformation.csv')
                    # Read WMO doodads definitions file
                    with open(wmocsvpath) as wmocsvfile:
                        wmoreader = csv.DictReader(wmocsvfile, delimiter=';')
                        for wmorow in wmoreader:
                            wmodoodad_path, wmodoodad_filename = os.path.split(
                                filepath)
                            wmonewpath = os.path.join(wmodoodad_path,
                                                      wmorow['ModelFile'])
                            # Import the doodad
                            bpy.ops.import_scene.obj(filepath=wmonewpath)
                            # Select the imported doodad
                            wmoobj_objects = bpy.context.selected_objects[:]
                            for wmoobj in wmoobj_objects:
                                # Prepend name
                                wmoobj.name = "(" + wmorow[
                                    'DoodadSet'] + ") " + wmoobj.name
                                # Set parent
                                wmoobj.parent = parent
                                # Set position
                                wmoobj.location = (float(wmorow['PositionX']) *
                                                   -1,
                                                   float(wmorow['PositionY']) *
                                                   -1,
                                                   float(wmorow['PositionZ']))
                                # Set rotation
                                rotQuat = Quaternion(
                                    (float(wmorow['RotationW']),
                                     float(wmorow['RotationX']),
                                     float(wmorow['RotationY']),
                                     float(wmorow['RotationZ'])))
                                rotEul = rotQuat.to_euler()
                                rotEul.x += radians(90)
                                #rotEul.z += radians(90);
                                wmoobj.rotation_euler = rotEul
                                # Set scale
                                if wmorow['ScaleFactor']:
                                    wmoobj.scale = (float(
                                        wmorow['ScaleFactor']),
                                                    float(
                                                        wmorow['ScaleFactor']),
                                                    float(
                                                        wmorow['ScaleFactor']))
                else:
                    print("m2")
                    bpy.ops.import_scene.obj(filepath=newpath)
                    obj_objects = bpy.context.selected_objects[:]
                    for obj in obj_objects:
                        # Set parent
                        obj.parent = doodadparent

                        # Set location
                        obj.location.x = (17066 - float(row['PositionX']))
                        obj.location.y = (17066 - float(row['PositionZ'])) * -1
                        obj.location.z = float(row['PositionY'])
                        obj.rotation_euler.x += radians(float(
                            row['RotationZ']))
                        obj.rotation_euler.y += radians(float(
                            row['RotationX']))
                        obj.rotation_euler.z = radians(
                            90 + float(row['RotationY']))  # okay

                        # Set scale
                        if row['ScaleFactor']:
                            obj.scale = (float(row['ScaleFactor']),
                                         float(row['ScaleFactor']),
                                         float(row['ScaleFactor']))

        progress.leave_substeps("Finished importing: %r" % filepath)

    return {'FINISHED'}
Exemple #22
0
def load_objects(context, progress: ProgressReport,
                 manager: ImportManager) -> Tuple[List[Node], Node]:
    progress.enter_substeps(len(manager.gltf.nodes) + 1, "Loading objects...")

    # collection
    view_layer = context.view_layer
    if view_layer.collections.active:
        collection = view_layer.collections.active.collection
    else:
        collection = context.scene.master_collection.new()
        view_layer.collections.link(collection)

    # setup
    nodes = [
        Node(i, gltf_node) for i, gltf_node in enumerate(manager.gltf.nodes)
    ]

    # set parents
    for gltf_node, node in zip(manager.gltf.nodes, nodes):
        for child_index in gltf_node.children:
            child = nodes[child_index]
            node.children.append(child)
            child.parent = node

    progress.step()

    # check root
    roots = [node for node in enumerate(nodes) if not node[1].parent]
    if len(roots) != 1:
        root = Node(len(nodes), gltftypes.Node({'name': '__root__'}))
        for _, node in roots:
            root.children.append(node)
            node.parent = root
    else:
        root = nodes[0]
    root.create_object(progress, collection, manager)

    def get_root(skin: gltftypes.Skin) -> Optional[Node]:

        root = None

        for joint in skin.joints:
            node = nodes[joint]
            if not root:
                root = node
            else:
                if node in root.get_ancestors():
                    root = node

        return root

    # create armatures
    root_skin = gltftypes.Skin({'name': 'skin'})

    for skin in manager.gltf.skins:
        for joint in skin.joints:
            if joint not in root_skin.joints:
                root_skin.joints.append(joint)
    skeleton = get_root(root_skin)

    if skeleton:
        skeleton.create_armature(context, collection, view_layer, root_skin)

    bpy.ops.object.mode_set(mode='OBJECT', toggle=False)

    progress.leave_substeps()
    return (nodes, root)
Exemple #23
0
def _write(
        context,
        filepath,
        EXPORT_TRI,  # ok
        EXPORT_EDGES,
        EXPORT_SMOOTH_GROUPS,
        EXPORT_SMOOTH_GROUPS_BITFLAGS,
        EXPORT_NORMALS,  # ok
        EXPORT_UV,  # ok
        EXPORT_MTL,
        EXPORT_APPLY_MODIFIERS,  # ok
        EXPORT_BLEN_OBS,
        EXPORT_GROUP_BY_OB,
        EXPORT_GROUP_BY_MAT,
        EXPORT_KEEP_VERT_ORDER,
        EXPORT_POLYGROUPS,
        EXPORT_CURVE_AS_NURBS,
        EXPORT_SEL_ONLY,  # ok
        EXPORT_ANIMATION,
        EXPORT_GLOBAL_MATRIX,
        EXPORT_RELATIVE_PATH,
        EXPORT_PATH_MODE,  # Not used
):

    with ProgressReport(context.window_manager) as progress:
        base_name, ext = os.path.splitext(filepath)
        context_name = [base_name, '', '',
                        ext]  # Base name, scene name, frame number, extension

        scene = context.scene

        # Exit edit mode before exporting, so current object states are exported properly.
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')

        orig_frame = scene.frame_current

        # Export an animation?
        if EXPORT_ANIMATION:
            scene_frames = range(scene.frame_start, scene.frame_end +
                                 1)  # Up to and including the end frame.
        else:
            scene_frames = [orig_frame]  # Dont export an animation.

        # Loop through all frames in the scene and export.
        progress.enter_substeps(len(scene_frames))
        for frame in scene_frames:
            if EXPORT_ANIMATION:  # Add frame to the filepath.
                context_name[2] = '_%.6d' % frame

            scene.frame_set(frame, 0.0)
            if EXPORT_SEL_ONLY:
                objects = context.selected_objects
            else:
                objects = scene.objects

            full_path = ''.join(context_name)

            # erm... bit of a problem here, this can overwrite files when exporting frames. not too bad.
            # EXPORT THE FILE.
            progress.enter_substeps(1)
            write_file(
                full_path,
                objects,
                scene,
                EXPORT_TRI,
                EXPORT_EDGES,
                EXPORT_SMOOTH_GROUPS,
                EXPORT_SMOOTH_GROUPS_BITFLAGS,
                EXPORT_NORMALS,
                EXPORT_UV,
                EXPORT_MTL,
                EXPORT_APPLY_MODIFIERS,
                EXPORT_BLEN_OBS,
                EXPORT_GROUP_BY_OB,
                EXPORT_GROUP_BY_MAT,
                EXPORT_KEEP_VERT_ORDER,
                EXPORT_POLYGROUPS,
                EXPORT_CURVE_AS_NURBS,
                EXPORT_GLOBAL_MATRIX,
                EXPORT_RELATIVE_PATH,
                EXPORT_PATH_MODE,
                progress,
            )
            progress.leave_substeps()

        scene.frame_set(orig_frame, 0.0)
        progress.leave_substeps()
Exemple #24
0
def save(context, filepath):
    with ProgressReport(context.window_manager) as progress:
        scene = context.scene
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')
        
        frame = scene.frame_current
        scene.frame_set(frame, 0.0)
        objects = scene.objects        

        nscene = exporter.io_Scene ()
        file = open(filepath + ".log", 'w')
        fw = file.write

        exp = exporter.io_Exporter ()
        scn = exporter.io_Scene ()

        animObjects = []
        models = {}

        for oi, ob in enumerate(objects):                        
            model = None

            if ob.animation_data:
                animObjects.append (ob)

            if ob.type == 'MESH':            
                model = exportMesh (scene, scn, ob, fw)
            
            if ob.type != 'ARMATURE' and ob.type != 'MESH':
                model = exportObject (scene, scn, ob)
            
            if model:
                parName = None
                if ob.parent:
                    parName = ob.parent.name
                    if ob.parent.type == 'ARMATURE' and ob.parent.parent:
                        parName = ob.parent.parent.name

                models[model.name] = { "model" : model, "parent" : parName }

        fw ("\n")

        # Set parents
        for name in models:
            fw ("\n")
            fw (name)
            fw ("\n")
            data = models[name]
            parName = data["parent"]
            fw ("1")
            if parName:
                parent = models.get (parName, None)
                fw ("\n")
                fw (parName)
                fw ("\n")
                if parent:
                    fw ("3")
                    parModel = parent["model"]
                    data["model"].parent = parModel
                    fw ("\n")
                    fw (parModel.name)
                    fw ("\n")

        writeAnimation (scene, scn, animObjects, fw)
        exp.write (filepath, scn)    
        file.close ()

    return {'FINISHED'}