def project_year(model, model_dir, what, scenario, year): print("projecting %s for %d using %s" % (what, year, scenario)) models = select_models(model, model_dir) # Read Sam's abundance model (forested and non-forested) modf = modelr.load(models[0]) intercept_f = modf.intercept predicts.predictify(modf) modn = modelr.load(models[1]) intercept_n = modn.intercept predicts.predictify(modn) # Open forested/non-forested mask layer fstnf = rasterio.open(utils.luh2_static('fstnf')) # Import standard PREDICTS rasters rastersf = predicts.rasterset('luh2', scenario, year, 'f') rsf = RasterSet(rastersf, mask=fstnf, maskval=0.0) rastersn = predicts.rasterset('luh2', scenario, year, 'n') rsn = RasterSet(rastersn, mask=fstnf, maskval=1.0) #rsn = RasterSet(rastersn) if what == 'bii': vname = 'bii' rsf[vname] = SimpleExpr( vname, 'exp(%s) / exp(%f)' % (modf.output, intercept_f)) rsn[vname] = SimpleExpr( vname, 'exp(%s) / exp(%f)' % (modn.output, intercept_n)) rsf[modf.output] = modf rsn[modn.output] = modn else: vname = modf.output assert modf.output == modn.output rsf[vname] = modf rsn[vname] = modn if what not in rsf: print('%s not in rasterset' % what) print(', '.join(sorted(rsf.keys()))) sys.exit(1) stime = time.time() datan, meta = rsn.eval(what, quiet=False) dataf, _ = rsf.eval(what, quiet=True) data_vals = dataf.filled(0) + datan.filled(0) data = data_vals.view(ma.MaskedArray) data.mask = np.logical_and(dataf.mask, datan.mask) #data = datan etime = time.time() print("executed in %6.2fs" % (etime - stime)) oname = '%s/luh2/%s-%s-%d.tif' % (utils.outdir(), scenario, what, year) with rasterio.open(oname, 'w', **meta) as dst: dst.write(data.filled(meta['nodata']), indexes=1) if None: fig = plt.figure(figsize=(8, 6)) ax = plt.gca() show(data, cmap='viridis', ax=ax) plt.savefig('luh2-%s-%d.png' % (scenario, year)) return
def project(year): print("projecting %d" % year) # Open the mask shape file shp_file = 'c:/data/from-adriana/tropicalforests.shp' shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load('../tropical-bii/simplifiedAbundanceModel.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', '', year, 'medium') rasters['primary_lightintense'] = SimpleExpr( 'primary_lightintense', 'primary_light + primary_intense') rasters['cropland_lightintense'] = SimpleExpr( 'cropland_lightintense', 'cropland_light + cropland_intense') rasters['pasture_lightintense'] = SimpleExpr( 'pasture_lightintense', 'pasture_light + pasture_intense') rasters['rd_dist'] = Raster('rd_dist', '/out/1km/roads-adrid.tif') rasters['hpd'] = Raster( 'hpd', '/vsizip//data/from-adriana/HPD01to12.zip/yr%d/hdr.adf' % year) rs = RasterSet(rasters, shapes=shapes, crop=True, all_touched=True) what = 'LogAbund' rs[what] = mod stime = time.time() rs.write(what, utils.outfn('1km', 'adrid-%d.tif' % year)) etime = time.time() print("executed in %6.2fs" % (etime - stime))
def project_year(model, model_dir, what, scenario, year): print("projecting %s for %d using %s" % (what, year, scenario)) models = select_models(model, model_dir) # Read Sam's abundance model (forested and non-forested) mod = modelr.load(models[0]) predicts.predictify(mod) # Import standard PREDICTS rasters by_age = 'young_secondary' in mod.syms print('by_age: %s' % str(by_age)) rasters = predicts.rasterset('luh5', scenario, year, by_age) rs = RasterSet(rasters) if what == 'bii': vname = 'bii' rs[vname] = SimpleExpr(vname, '%s / %f' % (mod.output, intercept)) else: vname = mod.output rs[vname] = mod if what not in rs: print('%s not in rasterset' % what) print(', '.join(sorted(rs.keys()))) sys.exit(1) stime = time.time() data, meta = rs.eval(what, quiet=False) etime = time.time() print("executed in %6.2fs" % (etime - stime)) oname = os.path.join(os.environ['OUTDIR'], 'luh5/%s-%s-%d.tif' % (scenario, what, year)) #hpd, _ = rs.eval('hpd', quiet=False) #hpd_max, meta2 = rs.eval('hpd_max', quiet=False) with rasterio.open(oname, 'w', **meta) as dst: #bb = dst.bounds #ul = map(int, ~meta2['affine'] * (bb[0], bb[3])) #lr = map(int, ~meta2['affine'] * (bb[2], bb[1])) #cap = ma.where(hpd > hpd_max[ul[1]:lr[1], ul[0]:lr[0]], True, False) #show(hpd, norm=colors.PowerNorm(gamma=0.2)) #show(cap * 1) #data.mask = np.logical_or(data.mask, cap) dst.write(data.filled(meta['nodata']), indexes=1) if None: fig = plt.figure(figsize=(8, 6)) ax = plt.gca() show(data, cmap='viridis', ax=ax) plt.savefig('luh2-%s-%d.png' % (scenario, year)) return
def project_year(model, model_dir, scenario, year): """Run a projection for a single year. Can be called in parallel when projecting a range of years. """ print("projecting %s for %d using %s" % (model, year, scenario)) # Import standard PREDICTS rasters rasters = predicts.rasterset('luh2', scenario, year) rs = RasterSet(rasters) what, model = select_model(model, model_dir) # Read Sam's models if model: mod = modelr.load(model) predicts.predictify(mod) rs[mod.output] = mod if what in ('CompSimAb', 'CompSimSR', 'Abundance', 'Richness'): if what in ('CompSimAb', 'CompSimSR'): expr = '(inv_logit(%s) - 0.01) / (inv_logit(%f) - 0.01)' else: expr = '(exp(%s) / exp(%f))' rs[what] = SimpleExpr(what, expr % (mod.output, mod.intercept)) if what not in rs: print('%s not in rasterset' % what) print(', '.join(sorted(rs.keys()))) sys.exit(1) stime = time.time() data, meta = rs.eval(what, quiet=True) etime = time.time() print("executed in %6.2fs" % (etime - stime)) oname = '%s/luh2/%s-%s-%04d.tif' % (utils.outdir(), scenario, what, year) with rasterio.open(oname, 'w', **meta) as dst: dst.write(data.filled(meta['nodata']), indexes=1) if None: fig = plt.figure(figsize=(8, 6)) show(data, cmap='viridis', ax=plt.gca()) fig.savefig('luh2-%s-%d.png' % (scenario, year)) return
predicts.predictify(mod) for scenario in scenarios: if scenario == 'historical': years = range(1970, 2015) hpdtrend = 'wpp' else: years = range(2015, 2101) hpdtrend = 'medium' for year in years: rasters = predicts.rasterset('luh2', scenario, year, hpd_trend=hpdtrend) # set soil properties to 0 rasters['BD'] = SimpleExpr('BD', 0) rasters['CLAY'] = SimpleExpr('CLAY', 0) rasters['OC'] = SimpleExpr('OC', 0) rasters['phkcl'] = SimpleExpr('phkcl', 0) #note that rasters.keys() shows you all the names of the rasters in this object rasters['secondary_vegetation_minimal'] = SimpleExpr( 'secondary_vegetation_minimal', 'young_secondary_minimal + intermediate_secondary_minimal + mature_secondary_minimal' ) rasters['secondary_vegetation_light'] = SimpleExpr( 'secondary_vegetation_light',
#!/usr/bin/env python import fiona import time from rasterio.plot import show, show_hist from projections.rasterset import RasterSet, Raster import projections.predicts as predicts import projections.modelr as modelr # Open the mask shape file shp_file = '../../data/from-adriana/tropicalforests.shp' shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load('../models/ab-corrected.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', 'foo', 2005, 'historical') rs = RasterSet(rasters, shapes=shapes, all_touched=True) rs[mod.output] = mod what = mod.output stime = time.time() data = rs.write(what, 'hires.tif') etime = time.time() print("executed in %6.2fs" % (etime - stime))
mask_file = os.path.join(utils.data_root(), '1km/mainland-from-igor-edited-at.tif') else: ISLMAIN = 0 mask_file = os.path.join(utils.data_root(), '1km/islands-from-igor-edited-at.tif') # Open the mask raster file (Mainlands) mask_ds = rasterio.open(mask_file) # Read Katia's abundance model mod = modelr.load('/home/vagrant/katia/models/best_model_abund.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', 'medium', year=2005) # create an ISL_MAINL raster # set it to Mainlands this time round (set Mainlands to 1 and Islands to 0) rasters['ISL_MAINLMAINLAND'] = SimpleExpr('ISL_MAINLMAINLAND', ISLMAIN) # specify the plantation forest maps as 0 # not sure why it's plantations_pri rather than plantation, but hey ho rasters['plantation_pri'] = SimpleExpr('plantation_pri', 0) rasters['plantation_pri_minimal'] = SimpleExpr('plantation_pri_minimal', 0) rasters['plantation_pri_light'] = SimpleExpr('plantation_pri_light', 0) rasters['plantation_pri_intense'] = SimpleExpr('plantation_pri_intense', 0) ## If CLIP is true, limit the predictor variable values to the max seen ## when fitting the model if args.clip:
from projections.rasterset import RasterSet, Raster import projections.predicts as predicts import projections.r2py.modelr as modelr # Open the mask shape file shp_file = os.path.join(os.environ['DATA_ROOT'], 'from-adriana/tropicalforests.shp') shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load(os.path.join(os.environ['MODEL_DIR'], 'ab-model.rds')) predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('luh5', 'historical', 1990, True) rs = RasterSet(rasters, shapes=shapes, all_touched=True) what = mod.output rs[mod.output] = mod stime = time.time() data1, meta_data1 = rs.eval(what) etime = time.time() print("executed in %6.2fs" % (etime - stime)) show(data1) ## ## Compare with good raster ## out = rasterio.open('adrid-good.tif') good = out.read(1, masked=True)
#!/usr/bin/env python from projections.atlas import atlas from projections.rasterset import RasterSet, Raster import projections.predicts as predicts import projections.rds as rds # Read Katia's abundance model (mainland) mod = rds.read('../models/ab-mainland.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('rcp', 'aim', 2020, 'medium') rs = RasterSet(rasters) rs[mod.output()] = mod data = rs.eval(mod.output()) # Display the raster atlas(data, mod.output(), 'viridis')