Exemple #1
0
def project_year(model, model_dir, what, scenario, year):
    print("projecting %s for %d using %s" % (what, year, scenario))

    models = select_models(model, model_dir)
    # Read Sam's abundance model (forested and non-forested)
    modf = modelr.load(models[0])
    intercept_f = modf.intercept
    predicts.predictify(modf)

    modn = modelr.load(models[1])
    intercept_n = modn.intercept
    predicts.predictify(modn)

    # Open forested/non-forested mask layer
    fstnf = rasterio.open(utils.luh2_static('fstnf'))

    # Import standard PREDICTS rasters
    rastersf = predicts.rasterset('luh2', scenario, year, 'f')
    rsf = RasterSet(rastersf, mask=fstnf, maskval=0.0)
    rastersn = predicts.rasterset('luh2', scenario, year, 'n')
    rsn = RasterSet(rastersn, mask=fstnf, maskval=1.0)
    #rsn = RasterSet(rastersn)

    if what == 'bii':
        vname = 'bii'
        rsf[vname] = SimpleExpr(
            vname, 'exp(%s) / exp(%f)' % (modf.output, intercept_f))
        rsn[vname] = SimpleExpr(
            vname, 'exp(%s) / exp(%f)' % (modn.output, intercept_n))
        rsf[modf.output] = modf
        rsn[modn.output] = modn
    else:
        vname = modf.output
        assert modf.output == modn.output
        rsf[vname] = modf
        rsn[vname] = modn

    if what not in rsf:
        print('%s not in rasterset' % what)
        print(', '.join(sorted(rsf.keys())))
        sys.exit(1)

    stime = time.time()
    datan, meta = rsn.eval(what, quiet=False)
    dataf, _ = rsf.eval(what, quiet=True)
    data_vals = dataf.filled(0) + datan.filled(0)
    data = data_vals.view(ma.MaskedArray)
    data.mask = np.logical_and(dataf.mask, datan.mask)
    #data = datan
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
    oname = '%s/luh2/%s-%s-%d.tif' % (utils.outdir(), scenario, what, year)
    with rasterio.open(oname, 'w', **meta) as dst:
        dst.write(data.filled(meta['nodata']), indexes=1)
    if None:
        fig = plt.figure(figsize=(8, 6))
        ax = plt.gca()
        show(data, cmap='viridis', ax=ax)
        plt.savefig('luh2-%s-%d.png' % (scenario, year))
    return
Exemple #2
0
def project(year):
    print("projecting %d" % year)
    # Open the mask shape file
    shp_file = 'c:/data/from-adriana/tropicalforests.shp'
    shapes = fiona.open(shp_file)

    # Read Adriana's abundance model (mainland)
    mod = modelr.load('../tropical-bii/simplifiedAbundanceModel.rds')
    predicts.predictify(mod)

    # Import standard PREDICTS rasters
    rasters = predicts.rasterset('1km', '', year, 'medium')
    rasters['primary_lightintense'] = SimpleExpr(
        'primary_lightintense', 'primary_light + primary_intense')
    rasters['cropland_lightintense'] = SimpleExpr(
        'cropland_lightintense', 'cropland_light + cropland_intense')
    rasters['pasture_lightintense'] = SimpleExpr(
        'pasture_lightintense', 'pasture_light + pasture_intense')
    rasters['rd_dist'] = Raster('rd_dist', '/out/1km/roads-adrid.tif')
    rasters['hpd'] = Raster(
        'hpd', '/vsizip//data/from-adriana/HPD01to12.zip/yr%d/hdr.adf' % year)

    rs = RasterSet(rasters, shapes=shapes, crop=True, all_touched=True)

    what = 'LogAbund'
    rs[what] = mod
    stime = time.time()
    rs.write(what, utils.outfn('1km', 'adrid-%d.tif' % year))
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
Exemple #3
0
def project_year(model, model_dir, what, scenario, year):
    print("projecting %s for %d using %s" % (what, year, scenario))

    models = select_models(model, model_dir)
    # Read Sam's abundance model (forested and non-forested)
    mod = modelr.load(models[0])
    predicts.predictify(mod)

    # Import standard PREDICTS rasters
    by_age = 'young_secondary' in mod.syms
    print('by_age: %s' % str(by_age))
    rasters = predicts.rasterset('luh5', scenario, year, by_age)
    rs = RasterSet(rasters)

    if what == 'bii':
        vname = 'bii'
        rs[vname] = SimpleExpr(vname, '%s / %f' % (mod.output, intercept))
    else:
        vname = mod.output
    rs[vname] = mod

    if what not in rs:
        print('%s not in rasterset' % what)
        print(', '.join(sorted(rs.keys())))
        sys.exit(1)

    stime = time.time()
    data, meta = rs.eval(what, quiet=False)
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
    oname = os.path.join(os.environ['OUTDIR'],
                         'luh5/%s-%s-%d.tif' % (scenario, what, year))
    #hpd, _ = rs.eval('hpd', quiet=False)
    #hpd_max, meta2 = rs.eval('hpd_max', quiet=False)
    with rasterio.open(oname, 'w', **meta) as dst:
        #bb = dst.bounds
        #ul = map(int, ~meta2['affine'] * (bb[0], bb[3]))
        #lr = map(int, ~meta2['affine'] * (bb[2], bb[1]))
        #cap = ma.where(hpd > hpd_max[ul[1]:lr[1], ul[0]:lr[0]], True, False)
        #show(hpd, norm=colors.PowerNorm(gamma=0.2))
        #show(cap * 1)
        #data.mask = np.logical_or(data.mask, cap)
        dst.write(data.filled(meta['nodata']), indexes=1)
    if None:
        fig = plt.figure(figsize=(8, 6))
        ax = plt.gca()
        show(data, cmap='viridis', ax=ax)
        plt.savefig('luh2-%s-%d.png' % (scenario, year))
    return
Exemple #4
0
def project_year(model, model_dir, scenario, year):
    """Run a projection for a single year.  Can be called in parallel when
projecting a range of years.

  """

    print("projecting %s for %d using %s" % (model, year, scenario))

    # Import standard PREDICTS rasters
    rasters = predicts.rasterset('luh2', scenario, year)
    rs = RasterSet(rasters)

    what, model = select_model(model, model_dir)
    # Read Sam's models
    if model:
        mod = modelr.load(model)
        predicts.predictify(mod)
        rs[mod.output] = mod

    if what in ('CompSimAb', 'CompSimSR', 'Abundance', 'Richness'):
        if what in ('CompSimAb', 'CompSimSR'):
            expr = '(inv_logit(%s) - 0.01) / (inv_logit(%f) - 0.01)'
        else:
            expr = '(exp(%s) / exp(%f))'
        rs[what] = SimpleExpr(what, expr % (mod.output, mod.intercept))

    if what not in rs:
        print('%s not in rasterset' % what)
        print(', '.join(sorted(rs.keys())))
        sys.exit(1)

    stime = time.time()
    data, meta = rs.eval(what, quiet=True)
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
    oname = '%s/luh2/%s-%s-%04d.tif' % (utils.outdir(), scenario, what, year)
    with rasterio.open(oname, 'w', **meta) as dst:
        dst.write(data.filled(meta['nodata']), indexes=1)
    if None:
        fig = plt.figure(figsize=(8, 6))
        show(data, cmap='viridis', ax=plt.gca())
        fig.savefig('luh2-%s-%d.png' % (scenario, year))
    return
            years = range(1970, 2015)
            hpdtrend = 'wpp'

        else:
            years = range(2015, 2101)
            hpdtrend = 'medium'

        for year in years:

            rasters = predicts.rasterset('luh2',
                                         scenario,
                                         year,
                                         hpd_trend=hpdtrend)

            # set soil properties to 0
            rasters['BD'] = SimpleExpr('BD', 0)
            rasters['CLAY'] = SimpleExpr('CLAY', 0)
            rasters['OC'] = SimpleExpr('OC', 0)
            rasters['phkcl'] = SimpleExpr('phkcl', 0)

            #note that rasters.keys() shows you all the names of the rasters in this object
            rasters['secondary_vegetation_minimal'] = SimpleExpr(
                'secondary_vegetation_minimal',
                'young_secondary_minimal + intermediate_secondary_minimal + mature_secondary_minimal'
            )
            rasters['secondary_vegetation_light'] = SimpleExpr(
                'secondary_vegetation_light',
                'young_secondary_light + intermediate_secondary_light + mature_secondary_light'
            )
            rasters['secondary_vegetation_intense'] = SimpleExpr(
                'secondary_vegetation_intense',
            year) + '.tif'
        ru.clip(inname, outname, 0, None)

        # calculate bii (with only a lower bound)
        # pull in all the rasters for computing bii
        bii_rs = RasterSet({
            'abundance':
            Raster(
                'abundance', 'C:/ds/temporal-bii/' + version +
                '/bii-ab-low-bound-%d.tif' % year),
            'comp_sim':
            Raster(
                'comp_sim', 'C:/ds/temporal-bii/' + version +
                '/bii-cs-low-bound-%d.tif' % year),
            'bii_ab':
            SimpleExpr('bii_ab', 'abundance * comp_sim')
        })

        # write out bii raster
        bii_rs.write(
            'bii_ab',
            utils.outfn('temporal-bii/' + version, 'bii-%d.tif' % year))

        # calculate bounded bii
        # clip the abundance rasters
        inname = 'C:/ds/temporal-bii/' + version + '/bii-ab-' + str(
            year) + '.tif'
        outname = 'C:/ds/temporal-bii/' + version + '/bii-ab-bound-' + str(
            year) + '.tif'
        ru.clip(inname, outname, 0, abmax)
Exemple #7
0
    mask_file = os.path.join(utils.data_root(),
                             '1km/islands-from-igor-edited-at.tif')

# Open the mask raster file (Mainlands)
mask_ds = rasterio.open(mask_file)

# Read Katia's abundance model
mod = modelr.load('/home/vagrant/katia/models/best_model_abund.rds')
predicts.predictify(mod)

# Import standard PREDICTS rasters
rasters = predicts.rasterset('1km', 'medium', year=2005)

# create an ISL_MAINL raster
# set it to Mainlands this time round (set Mainlands to 1 and Islands to 0)
rasters['ISL_MAINLMAINLAND'] = SimpleExpr('ISL_MAINLMAINLAND', ISLMAIN)

# specify the plantation forest maps as 0
# not sure why it's plantations_pri rather than plantation, but hey ho
rasters['plantation_pri'] = SimpleExpr('plantation_pri', 0)
rasters['plantation_pri_minimal'] = SimpleExpr('plantation_pri_minimal', 0)
rasters['plantation_pri_light'] = SimpleExpr('plantation_pri_light', 0)
rasters['plantation_pri_intense'] = SimpleExpr('plantation_pri_intense', 0)

## If CLIP is true, limit the predictor variable values to the max seen
## when fitting the model
if args.clip:
    rasters['clip_hpd'] = SimpleExpr(
        'clip_hpd', 'clip(hpd_ref, %f, %f)' % (HPD_MIN, HPD_MAX))
else:
    rasters['clip_hpd'] = SimpleExpr('clip_hpd', 'hpd_ref')
# Open the mask raster file
mask_file = os.path.join(utils.data_root(),
                         '1km/mainland-from-igor-edited.tif')
mask_ds = rasterio.open(mask_file)

# Richness compositional similarity model with updated PriMin-Urb coefficient
mod = modelr.load('/home/vagrant/katia/models/updated_compsim_rich.rds')
predicts.predictify(mod)

# Import standard PREDICTS rasters
rasters = predicts.rasterset('1km', 'medium', year=2005)

# create an ISL_MAINL raster
# set it to Mainlands this time round (set Mainlands to 1 and Islands to 0)
rasters['ISL_MAINMAINLAND'] = SimpleExpr('ISL_MAINMAINLAND', '2')
rasters['ISL_MAINISLAND'] = SimpleExpr('ISL_MAINISLAND', '0')

rasters['adjGeogDist'] = SimpleExpr('adjGeogDist', '0')
rasters['cubeRtEnvDist'] = SimpleExpr('cubeRtEnvDist', '0')

# set up the rasterset, cropping to mainlands
rs = RasterSet(rasters, mask=mask_ds, maskval=0, crop=True)
# if you're projecting the whole world, use this code instead
#rs = RasterSet(rasters)

# evaluate the model
# model is logit transformed with an adjustment, so back-transformation
rs[mod.output] = mod
rs['output'] = SimpleExpr(
    'output', '(inv_logit(%s) - 0.01) / (inv_logit(%f) - 0.01)' %
Exemple #9
0
def rset_add(rasters, name, expr):
  rasters[name] = SimpleExpr(name, expr)
Exemple #10
0
import numpy as np
import time

import matplotlib.pyplot as plt
from rasterio.plot import show, show_hist

from projections.atlas import atlas
from projections.rasterset import RasterSet, Raster
from projections.simpleexpr import SimpleExpr
import projections.predicts as predicts
import projections.rds as rds

# Import standard PREDICTS rasters
rasters = predicts.rasterset('rcp', 'aim', 2020, 'medium')
rs = RasterSet(rasters)
rs['logHPD_rs2'] = SimpleExpr('logHPD_rs', 'scale(log(hpd + 1), 0.0, 1.0)')

data1 = rs.eval('logHPD_rs')
data2 = rs.eval('logHPD_rs2')
data3 = np.where(np.isclose(data1, data2, equal_nan=True), 1, 0)
diff = np.fabs(data1 - data2)
print("max diff %f" % diff.max())

print("max in hpd_ref: %f" % rs['hpd_ref'].data.values.max())
print("max in hpd: %f" % rs['hpd'].data.dropna().values.max())

fig, ((ax1, ax2, ax3), (hx1, hx2, hx3)) = plt.subplots(2, 3, figsize=(21, 7))
show(data1, ax=ax1, cmap='Greens', title='Global max/min')
show(data2, ax=ax2, cmap='Greens', title='Computed max/min')
show(diff, ax=ax3, cmap='viridis', title='Difference', vmin=0, vmax=1.0)
show_hist(data1, ax=hx1, histtype='stepfilled')
Exemple #11
0
else:
  suffix = 'islands'
  ab_max = 1.443549
  sr_max = 1.413479

folder = 'clip' if args.clip else 'no-clip'

# pull in all the rasters for computing bii
bii_rs = RasterSet({'abundance': Raster('abundance',
                                        utils.outfn('katia',
                                                    folder,
                                                    'ab-%s.tif' % suffix)),
                    'comp_sim': Raster('comp_sim',
                                       utils.outfn('katia',
                                                   'ab-cs-%s.tif' % suffix)),
                    'clip_ab': SimpleExpr('clip_ab',
                                          'clip(abundance, 0, %f)' % ab_max),
                    'bii_ab': SimpleExpr('bii_ab', 'abundance * comp_sim'),
                    'bii_ab2': SimpleExpr('bii_ab2', 'clip_ab * comp_sim'),
})

# write out bii raster
bii_rs.write('bii_ab' if args.clip else 'bii_ab2',
             utils.outfn('katia', folder,
                         'abundance-based-bii-%s.tif' % suffix))

# do the same for species richness
# pull in all the rasters for computing bii
bii_rs = RasterSet({'sp_rich': Raster('sp_rich',
                                      utils.outfn('katia',
                                                  folder,
                                                  'sr-%s.tif' % suffix)),
Exemple #12
0
        # This line imports standard PREDICTS rasters
        #rasters = predicts.rasterset('1km', 'version3.3', year, 'medium')
        # we don't need this anymore as we're importing our own data

        # so set up an empty rasters object
        rasters = dict()

        # update the land-use classes that we need for the model
        rasters['cropland_minimal'] = Raster(
            'cropland_minimal', 'C:/ds/adrid/cropland_minimal-%d.tif' % year)
        rasters['cropland_light'] = Raster(
            'cropland_light', 'C:/ds/adrid/cropland_light-%d.tif' % year)
        rasters['cropland_intense'] = Raster(
            'cropland_intense', 'C:/ds/adrid/cropland_intense-%d.tif' % year)
        rasters['cropland'] = SimpleExpr(
            'cropland', 'cropland_minimal + cropland_light + cropland_intense')

        rasters['pasture_minimal'] = Raster(
            'pasture_minimal', 'C:/ds/adrid/pasture_minimal-%d.tif' % year)
        rasters['pasture_light'] = Raster(
            'pasture_light', 'C:/ds/adrid/pasture_light-%d.tif' % year)
        rasters['pasture_intense'] = Raster(
            'pasture_intense', 'C:/ds/adrid/pasture_intense-%d.tif' % year)
        rasters['pasture'] = SimpleExpr(
            'pasture', 'pasture_minimal + pasture_light + pasture_intense')

        rasters['primary_minimal'] = Raster(
            'primary_minimal', 'C:/ds/adrid/primary_minimal-%d.tif' % year)
        rasters['primary_light'] = Raster(
            'primary_light', 'C:/ds/adrid/primary_light-%d.tif' % year)
        rasters['primary_intense'] = Raster(
Exemple #13
0
from projections.simpleexpr import SimpleExpr
import projections.predicts as predicts
import projections.r2py.modelr as modelr
import projections.utils as utils
import projections.raster_utils as ru

CLIP = 'no-clip'

# pull in all the rasters for computing bii
bii_rs = RasterSet({
    'abundance':
    Raster('abundance', utils.outfn('katia', CLIP, 'bii-ab-mainlands.tif')),
    'comp_sim':
    Raster('comp_sim', utils.outfn('katia', 'bii-ab-cs-mainlands.tif')),
    'clip_ab':
    SimpleExpr('clip_ab', 'clip(abundance, 0, 1.655183)'),
    'bii_ab':
    SimpleExpr('bii_ab', 'abundance * comp_sim'),
    'bii_ab2':
    SimpleExpr('bii_ab2', 'clip_ab * comp_sim'),
})

# write out bii raster
bii_rs.write('bii_ab' if CLIP == 'clip' else 'bii_ab2',
             utils.outfn('katia', CLIP, 'abundance-based-bii-mainlands.tif'))

# do the same for species richness
# pull in all the rasters for computing bii
bii_rs = RasterSet({
    'sp_rich':
    Raster('sp_rich', utils.outfn('katia', CLIP, 'bii-sr-mainlands.tif')),
Exemple #14
0
        # This line imports standard PREDICTS rasters
        #rasters = predicts.rasterset('1km', 'version3.3', year, 'medium')
        # we don't need this anymore as we're importing our own data

        # so set up an empty rasters object
        rasters = dict()

        # update the land-use classes that we need for the model
        rasters['cropland_minimal'] = Raster(
            'cropland_minimal', 'C:/ds/adrid/cropland_minimal-%d.tif' % year)
        rasters['cropland_light'] = Raster(
            'cropland_light', 'C:/ds/adrid/cropland_light-%d.tif' % year)
        rasters['cropland_intense'] = Raster(
            'cropland_intense', 'C:/ds/adrid/cropland_intense-%d.tif' % year)
        rasters['cropland'] = SimpleExpr(
            'cropland', 'cropland_minimal + cropland_light + cropland_intense')

        rasters['pasture_minimal'] = Raster(
            'pasture_minimal', 'C:/ds/adrid/pasture_minimal-%d.tif' % year)
        rasters['pasture_light'] = Raster(
            'pasture_light', 'C:/ds/adrid/pasture_light-%d.tif' % year)
        rasters['pasture_intense'] = Raster(
            'pasture_intense', 'C:/ds/adrid/pasture_intense-%d.tif' % year)
        rasters['pasture'] = SimpleExpr(
            'pasture', 'pasture_minimal + pasture_light + pasture_intense')

        rasters['primary_minimal'] = Raster(
            'primary_minimal', 'C:/ds/adrid/primary_minimal-%d.tif' % year)
        rasters['primary_light'] = Raster(
            'primary_light', 'C:/ds/adrid/primary_light-%d.tif' % year)
        rasters['primary_intense'] = Raster(