def compare_refflows(): """Check if the ref-flow computed with ReferencedPII object is correct.""" data_set = 'HDI' random.seed() seed = random.randint(1, 1000) print(seed) alt_num = 20 ref_number = 4 strategy = prom.strategy2 input_file = 'data/' + str(data_set) + '/raw.csv' alternatives = dr.open_raw(input_file)[0] referenced = prom.ReferencedPII(alternatives, strategy=strategy, seed=seed) SRP = referenced.SRP ref_scores = referenced.scores for i, alt in enumerate(alternatives): SRP_alt = SRP[:] SRP_alt.append(alt) promethee = prom.PrometheeII(SRP_alt, seed=seed) scores = promethee.scores if abs(scores[-1] - ref_scores[i]) < 1e-5: print("ok") else: print("There is something wrong") print(scores)
def count_draws(threshold=0.001): """Test with EPI, SHA, GEQ dataset. This test counts the number of draws. """ data_sets = ['SHA', 'EPI', 'GEQ'] output = "res/ReferencedPII/reference_quantity/thresh_" + str(threshold) \ + ".txt" # Change these parameters if needed ref_numbers = [2, 3, 5, 10, 15, 25] alternative_numbers = [10, 20, 40, 80] seed_list = range(20) ref_set_strategy = prom.strategy1 all_res = [] for ref_number in ref_numbers: res = [] for alt_number in alternative_numbers: tot = 0 for seed in seed_list: for data_set in data_sets: source = "data/" + data_set + "/raw.csv" alts = dr.open_raw(source)[0] ref_prom = prom.ReferencedPII(alts, alt_num=alt_number, strategy=ref_set_strategy, seed=seed, ref_num=ref_number) tot += ref_prom.draws_quantity(ref_prom.scores, threshold) res.append(tot) all_res.append(res) print_to_file(output, ref_numbers, alternative_numbers, seed_list, all_res)
def compare(tests_qty=3): """Compare the different stratiegies.""" output = "res/ReferencedPII/strategies/comparisons.txt" data_sets = ['EPI', 'SHA', 'GEQ'] # data_sets = ['HDI'] range_seed = range(0, 0 + tests_qty) alt_num = 30 ref_number = 4 strategies = [ prom.strategy1, prom.strategy2, prom.strategy3, prom.strategy4 ] # strategies = [prom.strategy2] kendall_taus = [[] for i in range(4)] # One list for each strategy titles = [] for data_set in data_sets: input_file = 'data/' + str(data_set) + '/raw.csv' alternatives = dr.open_raw(input_file)[0] for seed in range_seed: promethee = prom.PrometheeII(alternatives, seed=seed, alt_num=alt_num) prom_ranking = promethee.ranking title = data_set + str(seed) titles.append(title) for i, strategy in enumerate(strategies): referenced = prom.ReferencedPII(alternatives, seed=seed, strategy=strategy, alt_num=alt_num) refrank = referenced.ranking tau = stats.kendalltau(refrank, prom_ranking)[0] tau = int(tau * 1000) / 1000 kendall_taus[i].append(tau) print_to_file(output, titles, kendall_taus, tests_qty)
def genetic_search(alternatives, seed=None, weights=None, ceils=None, coefficients=None, alt_num=-1, SRP_size=4, pop_size=600, mut_prob=0.01, MAXIT=50): """Search for references sets reproducing PII with a genetic algorithm. Inputs: alternatives - matrix composed of one list of evaluations for each alternative. seed - seed provided to python pseudo random number generator. It is used to create some random (w, F) for the method if these are not provided as arguments. See promethee.py to see how this is done weights - list of the relative importance (or weigths) of all criteria. ceils - list of the values of the strict preference thresholds for all criteria (p). coefficients - if 'ceils' is not provided, some new ceils will be computed as these coefficents time the amplitude between the highest and lowest evaluation of each criterion. alt_num - quantity of alternatives from 'alternative' which must be kept. SRP_size - quantity of reference profiles searched. pop_size - size of the population. mut_prob - probability of mutation of each of the evaluation of each individual. MAXIT - maximal number of iterations of the procedure. """ # Initialisation of the PrometheeII, ReferencedPII objects promethee = prom.PrometheeII(alternatives, seed=seed, alt_num=alt_num, ceils=ceils, weights=weights, coefficients=coefficients) prom_ranking = promethee.ranking random.seed() population = initial_population(alternatives, pop_size, SRP_size) referenced = prom.ReferencedPII(alternatives, seed=seed, alt_num=alt_num, ceils=ceils, weights=weights, ref_set=population[0], coefficients=coefficients) evaluations = compute_evaluations(population, prom_ranking, referenced) best_score = max(evaluations) best_SRP_ever = population[evaluations.index(best_score)] it = 0 while(abs(best_score - 1) > 1e-5 and it < MAXIT): # print("it:" + str(it) + ' best score:' + str(best_score)) parents = chose_parents(population, evaluations, pop_size) population = combine_parents(parents) population = mutate_population(population, mut_prob) evaluations = compute_evaluations(population, prom_ranking, referenced) if max(evaluations) > best_score: best_score = max(evaluations) best_SRP_ever = population[evaluations.index(best_score)] it += 1 return best_score
def __init__(self, init_alternatives, seed=0, alt_num=30, ref_number=4, pts_per_random_it=200, random_add_it=500, divide_it=5, desired_points=3000): """Constructor. Inputs: init_alternatives - matrix composed of one list of evaluations for each alternative. seed - used to generate some pseudo random parameters. max_alt - maximal number of alternatives on which the procedure must be applied. ref_number - number of reference profiles in each set. pts_per_random_it - minimal quantity of points which are tried to be added at random 'simultaneously'. This quantity is repeated 'random_add_it' times at each iteration of the procedure. random_add_it - quantity of times at each iteration of the procedure 'pts_per_random_it' are considered to be added to the set of all admissible points. divide_it - number of times we try to add a new point near of an admissible one (for each of the admissible ones). desired_points - desired size of the set of admissible points after each iteration. These four last arguments are used because it is computationally not possible to start with a big enough set of admissible points. Therefore, at each iteration some points. More information in the 'round_add_points' function. """ self.ref_number = ref_number self.pts_per_random_it = pts_per_random_it self.desired_points = desired_points self.seed = seed self.random_add_it = random_add_it self.divide_it = divide_it self.promethee = PII.PrometheeII(init_alternatives, seed=self.seed, alt_num=alt_num) self.PII_ranking = self.promethee.ranking self.alternatives = self.promethee.alternatives # Used to add new points self.min_per_crit = [ min(crit) for crit in self.promethee.eval_per_crit ] self.max_per_crit = [ max(crit) for crit in self.promethee.eval_per_crit ] self.delta_per_crit = [ self.max_per_crit[crit] - self.min_per_crit[crit] for crit in range(len(self.max_per_crit)) ] self.crit_number = len(self.promethee.alternatives[0]) # SRP only used to initialise the referenced promethee object SRP = [[1 for i in range(self.crit_number)] for r in range(ref_number)] self.referenced = PII.ReferencedPII(init_alternatives, seed=self.seed, alt_num=alt_num, ref_set=SRP) if (not PII.check_parameters(self.promethee, self.referenced)): print('parameters not equal between method') exit() # This list contains all points which are still admissible at any given # iteration but which do not exactly reproduce the PII ranking. Points # reproducing the PII ranking are kept in another list for performances # purposes. self.admissible_points = [] self.correct_points = [] self.constraints = [] # Matrix that keep trace of all the rankings (one list per iteration) self.kendall_taus = [] self.add_initial_points() # define the template for printing the iteration analysis self.it_template = "{:^3d}|{: ^9d}|{: ^10d}|" \ + "{:^7d}|{: ^7.3f}|{: ^7.3f}|{: ^7.3f}|{: ^7.3f}|{: ^10s}|{: ^9d}" self.iteration = 0