Exemple #1
0
def create_table_stochastic(dir_name):
    pp.RandomGenerator.get().set_seed(1234)
    with open(dir_name + "Sector_StochasticLoss.txt", "w") as file:
        for particle_def in particle_defs:
            for medium in mediums:
                for cut in cuts:
                    energy = initial_energy
                    sector_def = pp.SectorDefinition()
                    sector_def.cut_settings = cut
                    sector_def.medium = medium

                    sector = pp.Sector(particle_def, sector_def, interpoldef)

                    buf = [""]
                    buf.append(str(particle_def.name))
                    buf.append(str(medium.name))
                    buf.append(str(cut.ecut))
                    buf.append(str(cut.vcut))
                    buf.append(str(initial_energy))

                    for i in range(statistics):
                        loss, interaction_type = sector.make_stochastic_loss(
                            energy)
                        energy -= loss
                        buf.append(str(energy))
                        buf.append(str(interaction_type))
                        buf.append(
                            str(pp.RandomGenerator.get().random_double()))

                    buf.append("\n")
                    file.write("\t".join(buf))
Exemple #2
0
def create_table_continous(dir_name):
    pp.RandomGenerator.get().set_seed(1234)
    with open(dir_name + "Sector_ContinousLoss.txt", "w") as file:
        for particle_def in particle_defs:
            for medium in mediums:
                for cut in cuts:

                    energy = initial_energy
                    sector_def = pp.SectorDefinition()
                    sector_def.cut_settings = cut
                    sector_def.medium = medium

                    sector = pp.Sector(particle_def, sector_def, interpoldef)

                    buf = [""]
                    buf.append(str(particle_def.name))
                    buf.append(str(medium.name))
                    buf.append(str(cut.ecut))
                    buf.append(str(cut.vcut))
                    buf.append(str(energy))

                    for i in range(statistics):
                        energy = max(
                            sector.energy_decay(
                                energy,
                                pp.RandomGenerator.get().random_double()),
                            sector.energy_interaction(
                                energy,
                                pp.RandomGenerator.get().random_double()))
                        buf.append(str(energy))

                    buf.append("\n")
                    file.write("\t".join(buf))
Exemple #3
0
def create_table_propagate(dir_name):
    pp.RandomGenerator.get().set_seed(1234)
    with open(dir_name + "Sector_Propagate.txt", "w") as file:
        for particle_def in particle_defs:
            for medium in mediums:
                for cut in cuts:
                    sector_def = pp.SectorDefinition()
                    sector_def.cut_settings = cut
                    sector_def.medium = medium

                    sector = pp.Sector(particle_def, sector_def, interpoldef)

                    for energy in energies:
                        buf = [""]
                        buf.append(str(particle_def.name))
                        buf.append(str(medium.name))
                        buf.append(str(cut.ecut))
                        buf.append(str(cut.vcut))
                        buf.append(str(energy))

                        p_condition = pp.particle.DynamicData(0)
                        p_condition.position = pp.Vector3D(0, 0, 0)
                        p_condition.direction = pp.Vector3D(0, 0, -1)
                        p_condition.propagated_distance = 0
                        p_condition.energy = energy
                        sec = sector.propagate(p_condition, 1000, 0)

                        buf.append(str(sec.number_of_particles))
                        if (sec.particles[-1].propagated_distance < 999.99):
                            buf.append(
                                str(-sec.particles[-1].propagated_distance))
                        else:
                            buf.append(str(sec.particles[-1].energy))
                        buf.append("\n")
                        file.write("\t".join(buf))
Exemple #4
0
def create_table_energy_displacement(dir_name):
    pp.RandomGenerator.get().set_seed(1234)
    with open(dir_name + "Sector_Energy_Distance.txt", "w") as file:
        for particle_def in particle_defs:
            for medium in mediums:
                for cut in cuts:
                    sector_def = pp.SectorDefinition()
                    sector_def.cut_settings = cut
                    sector_def.medium = medium

                    sector = pp.Sector(particle_def, sector_def, interpoldef)

                    for energy in energies:
                        buf = [""]
                        buf.append(str(particle_def.name))
                        buf.append(str(medium.name))
                        buf.append(str(cut.ecut))
                        buf.append(str(cut.vcut))
                        buf.append(str(energy))

                        for disp in np.geomspace(1e0, 1e7, statistics):
                            energy_disp = sector.energy_distance(energy, disp)
                            buf.append(str(disp))
                            buf.append(str(energy_disp))

                        buf.append("\n")
                        file.write("\t".join(buf))
Exemple #5
0
def muons(energy, statistics, vcut, do_continuous_randomization, dist):

    sec_def = pp.SectorDefinition()
    sec_def.medium = pp.medium.StandardRock(1.0)
    sec_def.geometry = pp.geometry.Sphere(pp.Vector3D(), 1e20, 0)
    sec_def.particle_location = pp.ParticleLocation.inside_detector

    sec_def.scattering_model = pp.scattering.ScatteringModel.Highland
    sec_def.do_continuous_randomization = do_continuous_randomization

    sec_def.cut_settings.ecut = 0
    sec_def.cut_settings.vcut = vcut

    interpolation_def = pp.InterpolationDef()
    interpolation_def.path_to_tables = "~/.local/share/PROPOSAL/tables"
    interpolation_def.path_to_tables_readonly = "~/.local/share/PROPOSAL/tables"

    mu_def = pp.particle.MuMinusDef()
    prop = pp.Propagator(particle_def=mu_def,
                         sector_defs=[sec_def],
                         detector=pp.geometry.Sphere(pp.Vector3D(), 1e20, 0),
                         interpolation_def=interpolation_def)

    mu = pp.particle.DynamicData(mu_def.particle_type)
    mu.position = pp.Vector3D(0, 0, 0)
    mu.direction = pp.Vector3D(0, 0, -1)
    mu.energy = energy
    mu.propagated_distance = 0.
    mu.time = 0.

    mu_energies = []
    pp.RandomGenerator.get().set_seed(1234)

    for i in tqdm(range(statistics)):

        secondaries = prop.propagate(mu, dist * 100)

        mu_energies.append(secondaries.energy[-1])
        # del secondaries

    return mu_energies
Exemple #6
0
def make_sector(density, start, end, xs_model):
    #Define a sector
    sec_def = pp.SectorDefinition()
    components = [pp.component.Hydrogen(2), pp.component.Oxygen()]
    sec_def.medium = pp.medium.Medium('Ice_{}'.format(density), 1, 75.0,
                                      -3.5017, 0.09116, 3.4773, 0.2400, 2.8004,
                                      0, density, components)
    sec_def.geometry = pp.geometry.Sphere(pp.Vector3D(), end, start)
    sec_def.particle_location = pp.ParticleLocation.inside_detector
    sec_def.scattering_model = pp.scattering.ScatteringModel.Moliere
    sec_def.crosssection_defs.brems_def.lpm_effect = True
    sec_def.crosssection_defs.epair_def.lpm_effect = True
    sec_def.cut_settings.ecut = -1.0
    sec_def.cut_settings.vcut = 1e-3
    sec_def.do_continuous_randomization = True

    if (xs_model == 'dipole'):
        sec_def.crosssection_defs.photo_def.parametrization = pp.parametrization.photonuclear.PhotoParametrization.BlockDurandHa
    else:
        sec_def.crosssection_defs.photo_def.parametrization = pp.parametrization.photonuclear.PhotoParametrization.AbramowiczLevinLevyMaor97

    return sec_def
Exemple #7
0
def muons(energy, statistics, vcut, do_continuous_randomization, dist):

    sec_def = pp.SectorDefinition()
    sec_def.medium = pp.medium.StandardRock(1.0)
    sec_def.geometry = pp.geometry.Sphere(pp.Vector3D(), 1e20, 0)
    sec_def.particle_location = pp.ParticleLocation.inside_detector

    sec_def.scattering_model = pp.scattering.ScatteringModel.Moliere
    sec_def.do_continuous_randomization = do_continuous_randomization

    sec_def.cut_settings.ecut = 0
    sec_def.cut_settings.vcut = vcut

    interpolation_def = pp.InterpolationDef()
    interpolation_def.path_to_tables = ""

    prop = pp.Propagator(particle_def=pp.particle.MuMinusDef.get(),
                         sector_defs=[sec_def],
                         detector=pp.geometry.Sphere(pp.Vector3D(), 1e20, 0),
                         interpolation_def=interpolation_def)

    mu = prop.particle

    mu_energies = []

    for i in range(statistics):

        mu.position = pp.Vector3D(0, 0, 0)
        mu.direction = pp.Vector3D(0, 0, -1)
        mu.energy = energy
        mu.propagated_distance = 0

        d = prop.propagate(dist * 100)

        mu_energies.append(mu.energy)

    return mu_energies
Exemple #8
0
def test_proposal():

    # =========================================================
    # 	Propagate
    # =========================================================

    energy = 1e8  # MeV
    statistics = 100

    sec_def = pp.SectorDefinition()
    sec_def.medium = pp.medium.Ice(1.0)
    sec_def.geometry = pp.geometry.Sphere(pp.Vector3D(), 1e20, 0)
    sec_def.particle_location = pp.ParticleLocation.inside_detector

    sec_def.do_continuous_energy_loss_output = True

    sec_def.scattering_model = pp.scattering.ScatteringModel.HighlandIntegral
    sec_def.crosssection_defs.brems_def.lpm_effect = False
    sec_def.crosssection_defs.epair_def.lpm_effect = False

    sec_def.cut_settings.ecut = 500
    sec_def.cut_settings.vcut = 0.05

    interpolation_def = pp.InterpolationDef()
    interpolation_def.path_to_tables = table_path
    interpolation_def.path_to_tables_readonly = table_path

    mu_def = pp.particle.MuMinusDef()
    prop = pp.Propagator(particle_def=mu_def,
                         sector_defs=[sec_def],
                         detector=pp.geometry.Sphere(pp.Vector3D(), 1e20, 0),
                         interpolation_def=interpolation_def)

    mu = pp.particle.DynamicData(mu_def.particle_type)

    mu.position = pp.Vector3D(0, 0, 0)
    mu.direction = pp.Vector3D(0, 0, -1)
    mu.energy = energy
    mu.propagated_distance = 0

    pp.RandomGenerator.get().set_seed(1234)
    for i in range(statistics):

        secondaries = prop.propagate(mu).particles

        for idx, sec in enumerate(secondaries[1:-1]):
            if sec.type == int(ContinuousEnergyLoss):
                if (secondaries[idx - 1].type == int(ContinuousEnergyLoss)
                        or secondaries[idx + 1].type
                        == int(ContinuousEnergyLoss)):
                    print("2 Continuous Losses in a row")
                    continue

                energy_diff = secondaries[idx - 1].energy - secondaries[
                    idx + 1].parent_particle_energy
                continuou_energy_lost = sec.parent_particle_energy - sec.energy
                assert energy_diff == approx(continuou_energy_lost,
                                             abs=1e-3), "Energy differs"

                time_diff = secondaries[idx + 1].time - secondaries[idx -
                                                                    1].time
                assert time_diff == approx(sec.time, abs=1e-3), "Time differs"
Exemple #9
0
def propagate():
    """ Propagte muon in ice threw a cylindric detector

    Returns:
        (Particle) Particle representing the start position
        (Geometry) Geometry of the detector
        (list)     List of secondarys particles represeint interactions
    """

    medium = pp.medium.Ice(1.0)
    geo_detector = pp.geometry.Cylinder(pp.Vector3D(), 800, 0, 1600)
    geo_outside = pp.geometry.Box(pp.Vector3D(), 500000, 500000, 500000)

    # Infront

    sec_def_infront = pp.SectorDefinition()
    sec_def_infront.medium = medium
    sec_def_infront.geometry = geo_outside
    sec_def_infront.particle_location = pp.ParticleLocation.infront_detector

    sec_def_infront.scattering_model = pp.scattering.ScatteringModel.Moliere

    sec_def_infront.cut_settings.ecut = -1
    sec_def_infront.cut_settings.vcut = 0.05

    # Inside

    sec_def_inside = pp.SectorDefinition()
    sec_def_inside.medium = medium
    sec_def_inside.geometry = geo_outside
    sec_def_inside.particle_location = pp.ParticleLocation.inside_detector

    sec_def_inside.scattering_model = pp.scattering.ScatteringModel.Moliere

    sec_def_inside.cut_settings.ecut = 500
    sec_def_inside.cut_settings.vcut = -1

    # Behind

    sec_def_behind = pp.SectorDefinition()
    sec_def_behind.medium = medium
    sec_def_behind.geometry = geo_outside
    sec_def_behind.particle_location = pp.ParticleLocation.behind_detector

    sec_def_behind.scattering_model = pp.scattering.ScatteringModel.Moliere

    sec_def_behind.cut_settings.ecut = -1
    sec_def_behind.cut_settings.vcut = 0.05

    # Interpolation defintion

    interpolation_def = pp.InterpolationDef()
    interpolation_def.path_to_tables = "~/.local/share/PROPOSAL/tables"
    interpolation_def.path_to_tables_readonly = "~/.local/share/PROPOSAL/tables"

    # Propagator
    mu_def = pp.particle.MuMinusDef()
    prop = pp.Propagator(
        particle_def=mu_def,
        sector_defs=[sec_def_infront, sec_def_inside, sec_def_behind],
        detector=geo_detector,
        interpolation_def=interpolation_def
    )

    mu = pp.particle.DynamicData(mu_def.particle_type)

    # Set energy and position of the particle

    mu.energy = 9e6
    mu.direction = pp.Vector3D(0, 0, 1)

    pos = mu.position
    pos.set_cartesian_coordinates(0, 0, -1e5)
    mu.position = pos

    # mu_start = pp.particle.Particle(mu)

    secondarys = prop.propagate(mu).particles

    return mu, geo_detector, secondarys
def propagate_muons():

    mu_def = pp.particle.MuMinusDef()
    geometry = pp.geometry.Sphere(pp.Vector3D(), 1.e20, 0.0)
    ecut = 500
    vcut = 5e-2

    sector_def = pp.SectorDefinition()
    sector_def.cut_settings = pp.EnergyCutSettings(ecut, vcut)
    sector_def.medium = pp.medium.StandardRock(1.0)
    sector_def.geometry = geometry
    sector_def.scattering_model = pp.scattering.ScatteringModel.NoScattering
    sector_def.crosssection_defs.brems_def.lpm_effect = False
    sector_def.crosssection_defs.epair_def.lpm_effect = False
    # sector_def.crosssection_defs.photo_def.parametrization = pp.parametrization.photonuclear.PhotoParametrization.BezrukovBugaev
    # sector_def.do_stochastic_loss_weighting = True
    # sector_def.stochastic_loss_weighting = -0.1

    detector = geometry

    interpolation_def = pp.InterpolationDef()
    interpolation_def.path_to_tables = "~/.local/share/PROPOSAL/tables"
    interpolation_def.path_to_tables_readonly = "~/.local/share/PROPOSAL/tables"

    prop = pp.Propagator(mu_def, [sector_def], detector, interpolation_def)

    statistics_log = 4
    statistics = int(10**statistics_log)
    propagation_length = 1e4 # cm
    E_min_log = 10.0
    E_max_log = 10.0
    spectral_index = 1.0
    pp.RandomGenerator.get().set_seed(1234)

    # muon_energies = np.logspace(E_min_log, E_max_log, statistics)
    # muon_energies = power_law_sampler(spectral_index, 10**E_min_log, 10**E_max_log, statistics)
    muon_energies = np.ones(statistics)*10**10

    epair_secondary_energy = []
    brems_secondary_energy = []
    ioniz_secondary_energy = []
    photo_secondary_energy = []

    mu_prop = pp.particle.DynamicData(mu_def.particle_type)
    mu_prop.position = pp.Vector3D(0, 0, 0)
    mu_prop.direction = pp.Vector3D(0, 0, -1)
    mu_prop.propagated_distance = 0

    for mu_energy in tqdm(muon_energies):

        mu_prop.energy = mu_energy

        secondarys = prop.propagate(mu_prop, propagation_length)

        for sec in secondarys.particles:
            log_sec_energy = np.log10(sec.parent_particle_energy - sec.energy)

            if sec.type == int(pp.particle.Interaction_Type.Epair):
                epair_secondary_energy.append(log_sec_energy)
            if sec.type == int(pp.particle.Interaction_Type.Brems):
                brems_secondary_energy.append(log_sec_energy)
            if sec.type == int(pp.particle.Interaction_Type.DeltaE):
                ioniz_secondary_energy.append(log_sec_energy)
            if sec.type == int(pp.particle.Interaction_Type.NuclInt):
                photo_secondary_energy.append(log_sec_energy)

    # =========================================================
    #   Write
    # =========================================================

    np.savez(
        'data_sec_dist_{}_{}_Emin_{}_Emax_{}'.format(
            mu_def.name,
            sector_def.medium.name.lower(),
            E_min_log,
            E_max_log,
            ecut,
            vcut),
        brems=brems_secondary_energy,
        epair=epair_secondary_energy,
        photo=photo_secondary_energy,
        ioniz=ioniz_secondary_energy,
        statistics=[statistics],
        E_min=[E_min_log],
        E_max=[E_max_log],
        spectral_index=[spectral_index],
        distance=[propagation_length / 100],
        medium_name=[sector_def.medium.name.lower()],
        particle_name=[mu_def.name],
        ecut=[ecut],
        vcut=[vcut]
    )
Exemple #11
0
import proposal as pp
import matplotlib.pyplot as plt
from tqdm import tqdm

if __name__ == "__main__":

    # =========================================================
    # 	Propagate
    # =========================================================

    energy = 1e7  # MeV
    statistics = 10000

    sec_def = pp.SectorDefinition()
    sec_def.medium = pp.medium.Ice(1.0)
    sec_def.geometry = pp.geometry.Sphere(pp.Vector3D(), 1e20, 0)
    sec_def.particle_location = pp.ParticleLocation.inside_detector

    sec_def.scattering_model = pp.scattering.ScatteringModel.Moliere
    sec_def.crosssection_defs.brems_def.lpm_effect = False
    sec_def.crosssection_defs.epair_def.lpm_effect = False

    sec_def.cut_settings.ecut = 500
    sec_def.cut_settings.vcut = 0.05

    interpolation_def = pp.InterpolationDef()
    interpolation_def.path_to_tables = "~/.local/share/PROPOSAL/tables"
    interpolation_def.path_to_tables_readonly = "~/.local/share/PROPOSAL/tables"

    prop = pp.Propagator(particle_def=pp.particle.MuMinusDef(),
                         sector_defs=[sec_def],