Exemple #1
0
def user_stats_bulk(request):
    """
    Get statistics for selected users and concepts

    since:
      time as timestamp - get stats changed since
    users:
      list of identifiers of users
    concepts (Optional):
      list of identifiers of concepts
    language:
      language of concepts
    """

    language = get_language(request)
    users = load_query_json(request.GET, "users")
    since = None
    if 'since' in request.GET:
        since = datetime.datetime.fromtimestamp(int(request.GET['since']))
    concepts = None
    if "concepts" in request.GET:
        concepts = Concept.objects.filter(lang=language, active=True,
                                          identifier__in=load_query_json(request.GET, "concepts"))
    stats = UserStat.objects.get_user_stats(users, language, concepts=concepts, since=since)
    data = {"users": []}
    for user, s in stats.items():
        data["users"].append({
            "user_id": user,
            "concepts": s,
        })
    return render_json(request, data, template='concepts_json.html', help_text=user_stats_bulk.__doc__)
Exemple #2
0
def user_stats_bulk(request):
    """
    Get statistics for selected users and concepts

    since:
      time as timestamp - get stats changed since
    users:
      list of identifiers of users
    concepts (Optional):
      list of identifiers of concepts
    language:
      language of concepts
    """

    language = get_language(request)
    users = load_query_json(request.GET, "users")
    if request.user.is_staff:
        if not hasattr(request.user, 'userprofile') or User.objects.filter(
                pk__in=users, userprofile__classes__owner=request.user.
                userprofile).count() < len(users):
            return render_json(
                request, {
                    'error':
                    _('Some requested users are not in owned classes'),
                    'error_type': 'permission_denied'
                },
                template='concepts_json.html',
                status=401)
    since = None
    if 'since' in request.GET:
        since = datetime.datetime.fromtimestamp(int(request.GET['since']))
    concepts = None
    if "concepts" in request.GET:
        concepts = Concept.objects.filter(lang=language,
                                          active=True,
                                          identifier__in=load_query_json(
                                              request.GET, "concepts"))
    stats = UserStat.objects.get_user_stats(users,
                                            language,
                                            concepts=concepts,
                                            since=since)
    data = {"users": []}
    for user, s in stats.items():
        data["users"].append({
            "user_id": user,
            "concepts": s,
        })
    return render_json(request,
                       data,
                       template='concepts_json.html',
                       help_text=user_stats_bulk.__doc__)
Exemple #3
0
def user_stats(request):
    """
    JSON of user stats of the user

    GET parameters:
      html (bool):
        turn on the HTML version of the API, defaults to false
      user (int):
        identifier of the user, defaults to logged user
      concepts (list):
        list of identifiers of concepts, defaults to all concepts
      lang (str):
        language of requested concepts, defaults to language from django
    """
    user = get_user_id(request)
    language = get_language(request)

    concepts = None  # meaning all concept
    if "concepts" in request.GET:
        concepts = Concept.objects.filter(lang=language,
                                          active=True,
                                          identifier__in=load_query_json(
                                              request.GET, "concepts"))
    data = UserStat.objects.get_user_stats(user, language, concepts)
    return render_json(request,
                       data,
                       template='concepts_json.html',
                       help_text=user_stats.__doc__)
Exemple #4
0
def user_stats_bulk(request):
    """
    Get statistics for selected users and concepts

    since:
      time as timestamp - get stats changed since
    users:
      list of identifiers of users
    concepts (Optional):
      list of identifiers of concepts
    language:
      language of concepts
    """

    language = get_language(request)
    users = load_query_json(request.GET, "users")
    since = None
    if 'since' in request.GET:
        since = datetime.datetime.fromtimestamp(int(request.GET['since']))
    concepts = None
    if "concepts" in request.GET:
        concepts = Concept.objects.filter(lang=language,
                                          active=True,
                                          identifier__in=load_query_json(
                                              request.GET, "concepts"))
    stats = UserStat.objects.get_user_stats(users,
                                            language,
                                            concepts=concepts,
                                            since=since)
    data = {"users": []}
    for user, s in stats.items():
        data["users"].append({
            "user_id": user,
            "concepts": s,
        })
    return render_json(request,
                       data,
                       template='concepts_json.html',
                       help_text=user_stats_bulk.__doc__)
def user_stats_bulk(request):
    """
    Get statistics for selected users and concepts

    since:
      time as timestamp - get stats changed since
    users:
      list of identifiers of users
    concepts (Optional):
      list of identifiers of concepts
    language:
      language of concepts
    """

    language = get_language(request)
    users = load_query_json(request.GET, "users")
    if request.user.is_staff:
        if not hasattr(request.user, 'userprofile') or User.objects.filter(pk__in=users,
                       userprofile__classes__owner=request.user.userprofile).count() < len(users):
            return render_json(request, {
                'error': _('Some requested users are not in owned classes'),
                'error_type': 'permission_denied'
            }, template='concepts_json.html', status=401)
    since = None
    if 'since' in request.GET:
        since = datetime.datetime.fromtimestamp(int(request.GET['since']))
    concepts = None
    if "concepts" in request.GET:
        concepts = Concept.objects.filter(lang=language, active=True,
                                          identifier__in=load_query_json(request.GET, "concepts"))
    stats = UserStat.objects.get_user_stats(users, language, concepts=concepts, since=since)
    data = {"users": []}
    for user, s in stats.items():
        data["users"].append({
            "user_id": user,
            "concepts": s,
        })
    return render_json(request, data, template='concepts_json.html', help_text=user_stats_bulk.__doc__)
Exemple #6
0
def to_practice_counts(request):
    """
    Get number of items available to practice.

    filters:                -- use this or body
      json as in BODY
    language:
      language of the items

    BODY
      json in following format:
      {
        "#identifier": []         -- custom identifier (str) and filter
        ...
      }
    """
    data = None
    if request.method == "POST":
        data = json.loads(request.body.decode("utf-8"))["filters"]
    if "filters" in request.GET:
        data = load_query_json(request.GET, "filters")
    if data is None or len(data) == 0:
        return render_json(request, {},
                           template='models_json.html',
                           help_text=to_practice_counts.__doc__)
    language = get_language(request)
    timer('to_practice_counts')
    filter_names, filter_filters = list(zip(*sorted(data.items())))
    reachable_leaves = Item.objects.filter_all_reachable_leaves_many(
        filter_filters, language)
    response = {
        group_id: {
            'filter': data[group_id],
            'number_of_items': len(items),
        }
        for group_id, items in zip(filter_names, reachable_leaves)
    }
    LOGGER.debug(
        "to_practice_counts - getting items in groups took %s seconds",
        (timer('to_practice_counts')))
    return render_json(request,
                       response,
                       template='models_json.html',
                       help_text=to_practice_counts.__doc__)
Exemple #7
0
def user_stats(request):
    """
    JSON of user stats of the user

    GET parameters:
      html (bool):
        turn on the HTML version of the API, defaults to false
      user (int):
        identifier of the user, defaults to logged user
      concepts (list):
        list of identifiers of concepts, defaults to all concepts
      lang (str):
        language of requested concepts, defaults to language from django
    """
    user = get_user_id(request)
    language = get_language(request)

    concepts = None    # meaning all concept
    if "concepts" in request.GET:
        concepts = Concept.objects.filter(lang=language, active=True,
                                          identifier__in=load_query_json(request.GET, "concepts"))
    data = UserStat.objects.get_user_stats(user, language, concepts)
    return render_json(request, data, template='concepts_json.html', help_text=user_stats.__doc__)
Exemple #8
0
def to_practice_counts(request):
    """
    Get number of items available to practice.

    filters:                -- use this or body
      json as in BODY
    language:
      language of the items

    BODY
      json in following format:
      {
        "#identifier": []         -- custom identifier (str) and filter
        ...
      }
    """
    data = None
    if request.method == "POST":
        data = json.loads(request.body.decode("utf-8"))["filters"]
    if "filters" in request.GET:
        data = load_query_json(request.GET, "filters")
    if data is None:
        return render_json(request, {}, template='models_json.html', help_text=to_practice_counts.__doc__)
    language = get_language(request)
    timer('to_practice_counts')
    filter_names, filter_filters = list(zip(*sorted(data.items())))
    reachable_leaves = Item.objects.filter_all_reachable_leaves_many(filter_filters, language)
    response = {
        group_id: {
            'filter': data[group_id],
            'number_of_items': len(items),
        }
        for group_id, items in zip(filter_names, reachable_leaves)
    }
    LOGGER.debug("flashcard_counts - getting flashcards in groups took %s seconds", (timer('to_practice_counts')))
    return render_json(request, response, template='models_json.html', help_text=to_practice_counts.__doc__)
Exemple #9
0
def practice(request):
    """
    Return the given number of questions to practice adaptively. In case of
    POST request, try to save the answer(s).

    GET parameters:
        filter:
            list of lists of identifiers (may be prefixed by minus sign to
            mark complement)
        language:
            language (str) of items
        avoid:
            list of item ids to avoid
        limit:
            number of returned questions (default 10, maximum 100)
        time:
            time in format '%Y-%m-%d_%H:%M:%S' used for practicing
        user:
            identifier for the practicing user (only for stuff users)
        stats:
            turn on the enrichment of the objects by some statistics
        html:
            turn on the HTML version of the API

    BODY:
        see answer resource
    """
    if request.user.id is None:  # Google Bot
        return render_json(
            request, {
                'error': _('There is no user available for the practice.'),
                'error_type': 'user_undefined'
            },
            status=400,
            template='models_json.html')

    limit = min(int(request.GET.get('limit', 10)), 100)
    # prepare
    user = get_user_id(request)
    time = get_time(request)
    avoid = load_query_json(request.GET, "avoid", "[]")
    practice_filter = get_filter(request)
    practice_context = PracticeContext.objects.from_content(practice_filter)
    environment = get_environment()
    item_selector = get_item_selector()
    if is_time_overridden(request):
        environment.shift_time(time)

    # save answers
    if request.method == 'POST':
        _save_answers(request, practice_context, False)
    elif request.method == 'GET':
        PracticeSet.objects.filter(answer__user_id=request.user.id).update(
            finished=True)

    if limit > 0:
        item_ids = Item.objects.filter_all_reachable_leaves(
            practice_filter, get_language(request))
        item_ids = list(set(item_ids) - set(avoid))
        limit_size = get_config('proso_models',
                                'practice.limit_item_set_size_to_select_from',
                                default=None)
        if limit_size is not None and limit_size < len(item_ids):
            item_ids = sample(item_ids, limit_size)
        if len(item_ids) == 0:
            return render_json(request, {
                'error':
                _('There is no item for the given filter to practice.'),
                'error_type':
                'empty_practice'
            },
                               status=404,
                               template='models_json.html')
        selected_items, meta = item_selector.select(environment,
                                                    user,
                                                    item_ids,
                                                    time,
                                                    practice_context.id,
                                                    limit,
                                                    items_in_queue=len(avoid))
        result = []
        for item, item_meta in zip(selected_items, meta):
            question = {
                'object_type': 'question',
                'payload': Item.objects.item_id_to_json(item),
            }
            if item_meta is not None:
                question['meta'] = item_meta
            result.append(question)
    else:
        result = []

    return render_json(request,
                       result,
                       template='models_json.html',
                       help_text=practice.__doc__)
Exemple #10
0
def user_stats(request):
    """
    Get user statistics for selected groups of items

    time:
      time in format '%Y-%m-%d_%H:%M:%S' used for practicing
    user:
      identifier of the user (only for stuff users)
    username:
      username of user (only for users with public profile)
    filters:                -- use this or body
      json as in BODY
    mastered:
      use model to compute number of mastered items - can be slowed
    language:
      language of the items

    BODY
      json in following format:
      {
        "#identifier": []         -- custom identifier (str) and filter
        ...
      }
    """
    timer('user_stats')
    response = {}
    data = None
    if request.method == "POST":
        data = json.loads(request.body.decode("utf-8"))["filters"]
    if "filters" in request.GET:
        data = load_query_json(request.GET, "filters")
    if data is None:
        return render_json(request, {},
                           template='models_user_stats.html',
                           help_text=user_stats.__doc__)
    environment = get_environment()
    if is_time_overridden(request):
        environment.shift_time(get_time(request))
    user_id = get_user_id(request)
    language = get_language(request)
    filter_names, filter_filters = list(zip(*sorted(data.items())))
    reachable_leaves = Item.objects.filter_all_reachable_leaves_many(
        filter_filters, language)
    all_leaves = sorted(list(set(flatten(reachable_leaves))))
    answers = environment.number_of_answers_more_items(all_leaves, user_id)
    correct_answers = environment.number_of_correct_answers_more_items(
        all_leaves, user_id)
    if request.GET.get("mastered"):
        timer('user_stats_mastered')
        mastery_threshold = get_mastery_trashold()
        predictions = Item.objects.predict_for_overview(
            environment, user_id, all_leaves)
        mastered = dict(
            list(zip(all_leaves,
                     [p >= mastery_threshold for p in predictions])))
        LOGGER.debug(
            "user_stats - getting predictions for items took %s seconds",
            (timer('user_stats_mastered')))
    for identifier, items in zip(filter_names, reachable_leaves):
        if len(items) == 0:
            response[identifier] = {
                "filter": data[identifier],
                "number_of_items": 0,
            }
        else:
            response[identifier] = {
                "filter":
                data[identifier],
                "number_of_items":
                len(items),
                "number_of_practiced_items":
                sum(answers[i] > 0 for i in items),
                "number_of_answers":
                sum(answers[i] for i in items),
                "number_of_correct_answers":
                sum(correct_answers[i] for i in items),
            }
            if request.GET.get("mastered"):
                response[identifier]["number_of_mastered_items"] = sum(
                    mastered[i] for i in items)
    return render_json(request,
                       response,
                       template='models_user_stats.html',
                       help_text=user_stats.__doc__)
Exemple #11
0
def answers_per_month(request):
    try:
        from pylab import rcParams
        import matplotlib.pyplot as plt
        import pandas
        import seaborn as sns
    except ImportError:
        return HttpResponse('Can not import python packages for analysis.',
                            status=503)
    categories = load_query_json(request.GET, "categories", "[]")
    translated = Item.objects.translate_identifiers(categories,
                                                    get_language(request))
    translated_inverted = {item: name for name, item in translated.items()}
    children = pandas.DataFrame([{
        'item': item,
        'category': translated_inverted[category]
    } for category, items in Item.objects.get_reachable_children(
        list(translated.values()), get_language(request)).items()
                                 for item in items])
    with connection.cursor() as cursor:
        cursor.execute('''
            SELECT item_id, date_part('month', time), COUNT(1)
            FROM proso_models_answer
            GROUP BY 1, 2
            ''')
        data = []
        for item, month, answers in cursor:
            data.append({
                'item': item,
                'month': month,
                'answers': answers,
            })
    data = pandas.DataFrame(data)
    if len(children) == 0:
        data['category'] = data['item'].apply(lambda i: 'category/all')
    else:
        data = pandas.merge(data, children, on='item', how='inner')

    if 'percentage' in request.GET:

        def _percentage(group):
            total = group['answers'].sum()
            return group.groupby('category').apply(lambda g: 100 * g[
                'answers'].sum() / total).reset_index().rename(
                    columns={0: 'answers'})

        data = data.groupby('month').apply(_percentage).reset_index()

    def _apply(group):
        group['answers_cumsum'] = group['answers'].cumsum()
        return group

    data = data.sort_values(by=['category'],
                            ascending=False).groupby('month').apply(_apply)
    data['month'] = data['month'].astype(int)
    sns.set(style='white')
    rcParams['figure.figsize'] = 15, 10
    palette = sns.color_palette("hls", max(5, len(categories)))
    fig = plt.figure()
    for i, category in enumerate(sorted(data['category'].unique())):
        item_data = data[data['category'] == category]
        sns.barplot(x='month',
                    y='answers_cumsum',
                    data=item_data,
                    label=category.split('/')[1],
                    color=palette[i % len(palette)],
                    ci=None)
    plt.ylabel('Answers' + (' (%)' if 'percentage' in request.GET else ''))
    plt.xlabel('Month')
    plt.title('Answers per Month')
    if 'percentage' in request.GET:
        plt.ylim(0, 100)
    plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))

    response = HttpResponse(content_type='image/png')
    canvas = FigureCanvas(fig)
    canvas.print_png(response)
    return response
Exemple #12
0
def practice(request):
    """
    Return the given number of questions to practice adaptively. In case of
    POST request, try to save the answer(s).

    GET parameters:
        filter:
            list of lists of identifiers (may be prefixed by minus sign to
            mark complement)
        language:
            language (str) of flashcards
        avoid:
            list of item ids to avoid
        limit:
            number of returned questions (default 10, maximum 100)
        time:
            time in format '%Y-%m-%d_%H:%M:%S' used for practicing
        user:
            identifier for the practicing user (only for stuff users)
        stats:
            turn on the enrichment of the objects by some statistics
        html:
            turn on the HTML version of the API

    BODY:
        see answer resource
    """
    if request.user.id is None:  # Google Bot
        return render_json(request, {
            'error': _('There is no user available for the practice.'),
            'error_type': 'user_undefined'
        }, status=400, template='models_json.html')

    limit = min(int(request.GET.get('limit', 10)), 100)
    # prepare
    user = get_user_id(request)
    time = get_time(request)
    avoid = load_query_json(request.GET, "avoid", "[]")
    practice_filter = get_filter(request)
    practice_context = PracticeContext.objects.from_content(practice_filter)
    environment = get_environment()
    item_selector = get_item_selector()
    if is_time_overridden(request):
        environment.shift_time(time)

    # save answers
    if request.method == 'POST':
        _save_answers(request, practice_context)

    if len(practice_filter) > 0:
        item_ids = Item.objects.filter_all_reachable_leaves(practice_filter, get_language(request))
    else:
        item_ids = Item.objects.get_all_available_leaves()
    item_ids = list(set(item_ids) - set(avoid))
    if len(item_ids) == 0:
        return render_json(request, {
            'error': _('There is no item for the given filter to practice.'),
            'error_type': 'empty_practice'
        }, status=404, template='models_json.html')
    selected_items, meta = item_selector.select(environment, user, item_ids, time, practice_context.id, limit, items_in_queue=len(avoid))
    result = []
    for item, item_meta in zip(selected_items, meta):
        question = {
            'object_type': 'question',
            'payload': Item.objects.item_id_to_json(item),
        }
        if item_meta is not None:
            question['meta'] = item_meta
        result.append(question)

    return render_json(request, result, template='models_json.html', help_text=practice.__doc__)
Exemple #13
0
def user_stats(request):
    """
    Get user statistics for selected groups of items

    time:
      time in format '%Y-%m-%d_%H:%M:%S' used for practicing
    user:
      identifier of the user (only for stuff users)
    username:
      username of user (only for users with public profile)
    filters:                -- use this or body
      json as in BODY
    mastered:
      use model to compute number of mastered items - can be slowed
    language:
      language of the items

    BODY
      json in following format:
      {
        "#identifier": []         -- custom identifier (str) and filter
        ...
      }
    """
    timer('user_stats')
    response = {}
    data = None
    if request.method == "POST":
        data = json.loads(request.body.decode("utf-8"))["filters"]
    if "filters" in request.GET:
        data = load_query_json(request.GET, "filters")
    if data is None:
        return render_json(request, {}, template='models_user_stats.html', help_text=user_stats.__doc__)
    environment = get_environment()
    if is_time_overridden(request):
        environment.shift_time(get_time(request))
    user_id = get_user_id(request)
    language = get_language(request)
    filter_names, filter_filters = list(zip(*sorted(data.items())))
    reachable_leaves = Item.objects.filter_all_reachable_leaves_many(filter_filters, language)
    all_leaves = flatten(reachable_leaves)
    answers = dict(list(zip(all_leaves, environment.number_of_answers_more_items(all_leaves, user_id))))
    correct_answers = dict(list(zip(all_leaves, environment.number_of_correct_answers_more_items(all_leaves, user_id))))
    if request.GET.get("mastered"):
        timer('user_stats_mastered')
        mastery_threshold = get_mastery_trashold()
        predictions = get_predictive_model().predict_more_items(environment, user_id, all_leaves, get_time(request))
        mastered = dict(list(zip(all_leaves, [p >= mastery_threshold for p in predictions])))
        LOGGER.debug("user_stats - getting predictions for flashcards took %s seconds", (timer('user_stats_mastered')))
    for identifier, items in zip(filter_names, reachable_leaves):
        if len(items) == 0:
            response[identifier] = {
                "filter": data[identifier],
                "number_of_flashcards": 0,
            }
        else:
            response[identifier] = {
                "filter": data[identifier],
                "number_of_flashcards": len(items),
                "number_of_practiced_flashcards": sum(answers[i] > 0 for i in items),
                "number_of_answers": sum(answers[i] for i in items),
                "number_of_correct_answers": sum(correct_answers[i] for i in items),
            }
            if request.GET.get("mastered"):
                response[identifier]["number_of_mastered_flashcards"]= sum(mastered[i] for i in items)
    return render_json(request, response, template='models_user_stats.html', help_text=user_stats.__doc__)
Exemple #14
0
def answers_per_month(request):
    try:
        from pylab import rcParams
        import matplotlib.pyplot as plt
        import pandas
        import seaborn as sns
    except ImportError:
        return HttpResponse('Can not import python packages for analysis.', status=503)
    categories = load_query_json(request.GET, "categories", "[]")
    translated = Item.objects.translate_identifiers(categories, get_language(request))
    translated_inverted = {item: name for name, item in translated.items()}
    children = pandas.DataFrame([
        {'item': item, 'category': translated_inverted[category]}
        for category, items in Item.objects.get_reachable_children(
            list(translated.values()), get_language(request)
        ).items()
        for item in items
    ])
    with connection.cursor() as cursor:
        cursor.execute(
            '''
            SELECT item_id, date_part('month', time), COUNT(1)
            FROM proso_models_answer
            GROUP BY 1, 2
            '''
        )
        data = []
        for item, month, answers in cursor:
            data.append({
                'item': item,
                'month': month,
                'answers': answers,
            })
    data = pandas.DataFrame(data)
    if len(children) == 0:
        data['category'] = data['item'].apply(lambda i: 'category/all')
    else:
        data = pandas.merge(data, children, on='item', how='inner')

    if 'percentage' in request.GET:
        def _percentage(group):
            total = group['answers'].sum()
            return group.groupby('category').apply(lambda g: 100 * g['answers'].sum() / total).reset_index().rename(columns={0: 'answers'})
        data = data.groupby('month').apply(_percentage).reset_index()

    def _apply(group):
        group['answers_cumsum'] = group['answers'].cumsum()
        return group
    data = data.sort_values(by=['category'], ascending=False).groupby('month').apply(_apply)
    data['month'] = data['month'].astype(int)
    sns.set(style='white')
    rcParams['figure.figsize'] = 15, 10
    palette = sns.color_palette("hls", max(5, len(categories)))
    fig = plt.figure()
    for i, category in enumerate(sorted(data['category'].unique())):
        item_data = data[data['category'] == category]
        sns.barplot(
            x='month',
            y='answers_cumsum',
            data=item_data,
            label=category.split('/')[1],
            color=palette[i % len(palette)],
            ci=None
        )
    plt.ylabel('Answers' + (' (%)' if 'percentage' in request.GET else ''))
    plt.xlabel('Month')
    plt.title('Answers per Month')
    if 'percentage' in request.GET:
        plt.ylim(0, 100)
    plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))

    response = HttpResponse(content_type='image/png')
    canvas = FigureCanvas(fig)
    canvas.print_png(response)
    return response
Exemple #15
0
def get_filter(request):
    return load_query_json(request.GET, "filter", "[]")