Exemple #1
0
def assign_data():
    ''' Assign datasets to corresponding devices
    '''

    # load datasets for two pis
    X_train_1, X_train_2, y_train_1, y_train_2 = read_data()
    print('_' * 30 + ' check the consistency ' + '_' * 30)
    print('len(X_1)=:{}, len(y_1)=:{}'.format(len(X_train_1), len(y_train_1)))
    print('len(X_2)=:{}, len(y_2)=:{}'.format(len(X_train_2), len(y_train_2)))
    print('-' * 70)

    # send data to pis [X_train_1, y_train_1] is for pi1, [X_train_2, y_train_2] is for pi2

    data_1 = np.asarray(np.hstack((X_train_1, y_train_1.reshape(-1, 1))))
    data_2 = np.asarray(np.hstack((X_train_1, y_train_1.reshape(-1, 1))))

    send("172.24.6.253", "data_01", 12345, data_1[:100, :])
    send("172.24.6.253", "data_02", 12345, data_2[:100, :])
Exemple #2
0
def main():

    # id of this device
    ID = "01"

    # define local model
    optimizer = tf.train.GradientDescentOptimizer(0.1)
    model = Model(num_classes=10, optimizer=optimizer, regu_param=1e-3)

    # num of communication round
    num_rounds = 100
    # num of local iterations
    num_epochs = 10

    # receive dataset from server
    topic = "data_" + ID
    dataset = receive("172.24.6.253",
                      topic=topic,
                      12345,
                      self_name=None,
                      time1=None,
                      count=1)

    for round in range(num_rounds):
        # receive model parameter from server
        model_params = receive("172.24.6.253",
                               topic="global_model",
                               12345,
                               self_name=None,
                               time1=None,
                               count=1)
        # check if received global model
        if len(model_params) == 0:
            print('=' * 60)
            print('[INFO] DID NOT RECEIVE GLOBAL MODEL !')
            return 0

        # update local model
        local_model = model.solve_inner(data=dataset,
                                        num_epochs=num_epochs,
                                        batch_size=10)

        # upload local model to server
        send("172.24.6.253", "local_model", 12345, local_model)
def main():

    # num of communication round
    num_round = 100

    # num of devices
    num_devices = 2

    # assign datasets to devices
    assign_data()

    # initialize model
    global_model_init = model_initialier()
    #print(global_model_init)

    ### do not change model datatype here, change inside the send function
    #model_change = [model_init[0].tolist(),model_init[1].tolist()]

    # boardcast model_init to all devices

    send("172.24.6.253", "global_model", 12345, global_model_init)
    print('send model successfully')

    # continue the training for 100 iterations

    for i in range(num_round):
        ## I don't know the meaning of self_name, pls specify in your code
        local_model = receive("172.24.6.253", "local_model", 12345, "host",
                              0.1, num_devices - 1)
        print("local_model good")

        # aggregate local models
        # assume I receive a list of local models
        global_model = aggregate(local_model)

        # braodcast globel_model to devices
        send("172.24.6.253", "global_model", 12345, global_model)