Exemple #1
0
def save_tree_description(tree: ProtoTree, optimizer, scheduler,
                          description: str, log: Log):
    tree.eval()
    # Save model with description
    tree.save(f'{log.checkpoint_dir}/' + description)
    tree.save_state(f'{log.checkpoint_dir}/' + description)
    torch.save(optimizer.state_dict(),
               f'{log.checkpoint_dir}/' + description + '/optimizer_state.pth')
    torch.save(scheduler.state_dict(),
               f'{log.checkpoint_dir}/' + description + '/scheduler_state.pth')
Exemple #2
0
def save_best_test_tree(tree: ProtoTree, optimizer, scheduler,
                        best_test_acc: float, test_acc: float, log: Log):
    tree.eval()
    if test_acc > best_test_acc:
        best_test_acc = test_acc
        tree.save(f'{log.checkpoint_dir}/best_test_model')
        tree.save_state(f'{log.checkpoint_dir}/best_test_model')
        torch.save(
            optimizer.state_dict(),
            f'{log.checkpoint_dir}/best_test_model/optimizer_state.pth')
        torch.save(
            scheduler.state_dict(),
            f'{log.checkpoint_dir}/best_test_model/scheduler_state.pth')
    return best_test_acc
Exemple #3
0
def save_tree(tree: ProtoTree, optimizer, scheduler, epoch: int, log: Log,
              args: argparse.Namespace):
    tree.eval()
    # Save latest model
    tree.save(f'{log.checkpoint_dir}/latest')
    tree.save_state(f'{log.checkpoint_dir}/latest')
    torch.save(optimizer.state_dict(),
               f'{log.checkpoint_dir}/latest/optimizer_state.pth')
    torch.save(scheduler.state_dict(),
               f'{log.checkpoint_dir}/latest/scheduler_state.pth')

    # Save model every 10 epochs
    if epoch == args.epochs or epoch % 10 == 0:
        tree.save(f'{log.checkpoint_dir}/epoch_{epoch}')
        tree.save_state(f'{log.checkpoint_dir}/epoch_{epoch}')
        torch.save(optimizer.state_dict(),
                   f'{log.checkpoint_dir}/epoch_{epoch}/optimizer_state.pth')
        torch.save(scheduler.state_dict(),
                   f'{log.checkpoint_dir}/epoch_{epoch}/scheduler_state.pth')
Exemple #4
0
def run_tree(args=None):
    args = args or get_args()
    # Create a logger
    log = Log(args.log_dir)
    print("Log dir: ", args.log_dir, flush=True)
    # Create a csv log for storing the test accuracy, mean train accuracy and mean loss for each epoch
    log.create_log('log_epoch_overview', 'epoch', 'test_acc', 'mean_train_acc', 'mean_train_crossentropy_loss_during_epoch')
    # Log the run arguments
    save_args(args, log.metadata_dir)
    if not args.disable_cuda and torch.cuda.is_available():
        # device = torch.device('cuda')
        device = torch.device('cuda:{}'.format(torch.cuda.current_device()))
    else:
        device = torch.device('cpu')
        
    # Log which device was actually used
    log.log_message('Device used: '+str(device))

    # Create a log for logging the loss values
    log_prefix = 'log_train_epochs'
    log_loss = log_prefix+'_losses'
    log.create_log(log_loss, 'epoch', 'batch', 'loss', 'batch_train_acc')

    # Obtain the dataset and dataloaders
    trainloader, projectloader, testloader, classes, num_channels = get_dataloaders(args)
    # Create a convolutional network based on arguments and add 1x1 conv layer
    features_net, add_on_layers = get_network(num_channels, args)
    # Create a ProtoTree
    tree = ProtoTree(num_classes=len(classes),
                    feature_net = features_net,
                    args = args,
                    add_on_layers = add_on_layers)
    tree = tree.to(device=device)
    # Determine which optimizer should be used to update the tree parameters
    optimizer, params_to_freeze, params_to_train = get_optimizer(tree, args)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=args.milestones, gamma=args.gamma)
    tree, epoch = init_tree(tree, optimizer, scheduler, device, args)
    
    tree.save(f'{log.checkpoint_dir}/tree_init')
    log.log_message("Max depth %s, so %s internal nodes and %s leaves"%(args.depth, tree.num_branches, tree.num_leaves))
    analyse_output_shape(tree, trainloader, log, device)

    leaf_labels = dict()
    best_train_acc = 0.
    best_test_acc = 0.

    if epoch < args.epochs + 1:
        '''
            TRAIN AND EVALUATE TREE
        '''
        for epoch in range(epoch, args.epochs + 1):
            log.log_message("\nEpoch %s"%str(epoch))
            # Freeze (part of) network for some epochs if indicated in args
            freeze(tree, epoch, params_to_freeze, params_to_train, args, log)
            log_learning_rates(optimizer, args, log)
            
            # Train tree
            if tree._kontschieder_train:
                train_info = train_epoch_kontschieder(tree, trainloader, optimizer, epoch, args.disable_derivative_free_leaf_optim, device, log, log_prefix)
            else:
                train_info = train_epoch(tree, trainloader, optimizer, epoch, args.disable_derivative_free_leaf_optim, device, log, log_prefix)
            save_tree(tree, optimizer, scheduler, epoch, log, args)
            best_train_acc = save_best_train_tree(tree, optimizer, scheduler, best_train_acc, train_info['train_accuracy'], log)
            leaf_labels = analyse_leafs(tree, epoch, len(classes), leaf_labels, args.pruning_threshold_leaves, log)
            
            # Evaluate tree
            if args.epochs>100:
                if epoch%10==0 or epoch==args.epochs:
                    eval_info = eval(tree, testloader, epoch, device, log)
                    original_test_acc = eval_info['test_accuracy']
                    best_test_acc = save_best_test_tree(tree, optimizer, scheduler, best_test_acc, eval_info['test_accuracy'], log)
                    log.log_values('log_epoch_overview', epoch, eval_info['test_accuracy'], train_info['train_accuracy'], train_info['loss'])
                else:
                    log.log_values('log_epoch_overview', epoch, "n.a.", train_info['train_accuracy'], train_info['loss'])
            else:
                eval_info = eval(tree, testloader, epoch, device, log)
                original_test_acc = eval_info['test_accuracy']
                best_test_acc = save_best_test_tree(tree, optimizer, scheduler, best_test_acc, eval_info['test_accuracy'], log)
                log.log_values('log_epoch_overview', epoch, eval_info['test_accuracy'], train_info['train_accuracy'], train_info['loss'])
            
            scheduler.step()
 
    else: #tree was loaded and not trained, so evaluate only
        '''
            EVALUATE TREE
        ''' 
        eval_info = eval(tree, testloader, epoch, device, log)
        original_test_acc = eval_info['test_accuracy']
        best_test_acc = save_best_test_tree(tree, optimizer, scheduler, best_test_acc, eval_info['test_accuracy'], log)
        log.log_values('log_epoch_overview', epoch, eval_info['test_accuracy'], "n.a.", "n.a.")

    '''
        EVALUATE AND ANALYSE TRAINED TREE
    '''
    log.log_message("Training Finished. Best training accuracy was %s, best test accuracy was %s\n"%(str(best_train_acc), str(best_test_acc)))
    trained_tree = deepcopy(tree)
    leaf_labels = analyse_leafs(tree, epoch+1, len(classes), leaf_labels, args.pruning_threshold_leaves, log)
    analyse_leaf_distributions(tree, log)
    
    '''
        PRUNE
    '''
    pruned = prune(tree, args.pruning_threshold_leaves, log)
    name = "pruned"
    save_tree_description(tree, optimizer, scheduler, name, log)
    pruned_tree = deepcopy(tree)
    # Analyse and evaluate pruned tree
    leaf_labels = analyse_leafs(tree, epoch+2, len(classes), leaf_labels, args.pruning_threshold_leaves, log)
    analyse_leaf_distributions(tree, log)
    eval_info = eval(tree, testloader, name, device, log)
    pruned_test_acc = eval_info['test_accuracy']

    pruned_tree = tree

    '''
        PROJECT
    '''
    project_info, tree = project_with_class_constraints(deepcopy(pruned_tree), projectloader, device, args, log)
    name = "pruned_and_projected"
    save_tree_description(tree, optimizer, scheduler, name, log)
    pruned_projected_tree = deepcopy(tree)
    # Analyse and evaluate pruned tree with projected prototypes
    average_distance_nearest_image(project_info, tree, log)
    leaf_labels = analyse_leafs(tree, epoch+3, len(classes), leaf_labels, args.pruning_threshold_leaves, log)
    analyse_leaf_distributions(tree, log)
    eval_info = eval(tree, testloader, name, device, log)
    pruned_projected_test_acc = eval_info['test_accuracy']
    eval_info_samplemax = eval(tree, testloader, name, device, log, 'sample_max')
    get_avg_path_length(tree, eval_info_samplemax, log)
    eval_info_greedy = eval(tree, testloader, name, device, log, 'greedy')
    get_avg_path_length(tree, eval_info_greedy, log)
    fidelity_info = eval_fidelity(tree, testloader, device, log)

    # Upsample prototype for visualization
    project_info = upsample(tree, project_info, projectloader, name, args, log)
    # visualize tree
    gen_vis(tree, name, args, classes)

    
    return trained_tree.to('cpu'), pruned_tree.to('cpu'), pruned_projected_tree.to('cpu'), original_test_acc, pruned_test_acc, pruned_projected_test_acc, project_info, eval_info_samplemax, eval_info_greedy, fidelity_info