Exemple #1
0
from proveit.basiclogic.boolean.theorems import trueConclusion
from proveit.basiclogic import deriveStmtEqTrue, TRUE
from proveit.common import A

deriveStmtEqTrue(trueConclusion.specialize({A:TRUE})).qed(__file__)
from proveit.basiclogic.boolean.theorems import foldForallOverBool
from proveit.basiclogic import Implies, deriveStmtEqTrue
from proveit.common import P

# P(TRUE) and P(FALSE) => forall_{A in BOOLEANS} P(A)
folding = foldForallOverBool.specialize()
# forall_{P} [P(TRUE) and P(FALSE)] => {[forall_{A in BOOLEANS} P(A)] = TRUE}
Implies(folding.hypothesis, deriveStmtEqTrue(
    folding.deriveConclusion())).generalize(P).qed(__file__)
from proveit.basiclogic.boolean.axioms import existsDef
from proveit.basiclogic import Forall, NotEquals, Implies, TRUE, FALSE, deriveStmtEqTrue, In
from proveit.common import X, P, S, xEtc, yEtc, PxEtc, PyEtc, Qetc, etc_QxEtc, etc_QyEtc

inDomain = In(xEtc, S)  # ..x.. in S

# neverPy = [forall_{..y.. in S | ..Q(..y..)..} (P(..y..) != TRUE)]
neverPy = Forall(yEtc, NotEquals(PyEtc, TRUE), S, etc_QyEtc)
# (P(..x..) != TRUE) assuming ..Q(..x..).., neverPy
neverPy.specialize({yEtc: xEtc}).proven({etc_QxEtc, neverPy, inDomain})
# (TRUE != TRUE) assuming ..Q(..x..).., P(..x..), neverPy
trueNotEqTrue = deriveStmtEqTrue(PxEtc).subRightSideInto(
    NotEquals(X, TRUE), X).proven({etc_QxEtc, PxEtc, neverPy, inDomain})
# FALSE assuming ..Q(..x..).., P(..x..), neverPy
trueNotEqTrue.evaluation().deriveContradiction().deriveConclusion().proven(
    {etc_QxEtc, PxEtc, neverPy, inDomain})
# [forall_{..y.. in S | ..Q(..y..)..} (P(..y..) != TRUE)] in BOOLEANS
neverPy.deduceInBool().proven()
# Not(forall_{..y.. in S | ..Q(..y..)..} (P(..y..) != TRUE) assuming ..Q(..x..).., P(..x..)
Implies(neverPy,
        FALSE).deriveViaContradiction().proven({etc_QxEtc, PxEtc, inDomain})
# exists_{..y.. in S | ..Q(..y..)..} P(..y..) assuming Q(..x..), P(..x..)
existence = existsDef.specialize({
    xEtc: yEtc
}).deriveLeftViaEquivalence().proven({etc_QxEtc, PxEtc, inDomain})
# forall_{P, ..Q.., S} forall_{..x.. in S | ..Q(..x..)..} [P(..x..) => exists_{..y.. in S | ..Q(..y..)..} P(..y..)]
Implies(PxEtc, existence).generalize(xEtc, S, etc_QxEtc).generalize(
    (P, Qetc, S)).qed(__file__)
Exemple #4
0
from proveit.basiclogic.boolean.axioms import implicitNotF, implicitNotT
from proveit.basiclogic import Implies, Not, deriveStmtEqTrue
from proveit.common import A

# hypothesis: Not(Not(A))
hypothesis = Not(Not(A))
# [Not(Not(A)) = TRUE] assuming hypothesis
deriveStmtEqTrue(hypothesis).proven({hypothesis})
# [Not(A) = FALSE] assuming hypothesis
implicitNotF.specialize({A: Not(A)}).deriveConclusion().proven({hypothesis})
# A assuming hypothesis
implicitNotT.specialize().deriveConclusion().deriveViaBooleanEquality().proven(
    {hypothesis})
# forall_{A} Not(Not(A)) => A
Implies(Not(Not(A)), A).generalize(A).qed(__file__)
Exemple #5
0
from proveit.basiclogic.boolean.axioms import notT
from proveit.basiclogic.boolean.theorems import notFromEqFalse
from proveit.basiclogic import Implies, Not, deriveStmtEqTrue
from proveit.common import A, X

# A=TRUE assuming A
AeqT = deriveStmtEqTrue(A)
# [Not(A)=FALSE] assuming A=TRUE
AeqT.substitution(Not(A)).applyTransitivity(notT).proven({AeqT})
# [Not(A)=FALSE] => Not(Not(A))
notFromEqFalse.specialize({A: Not(A)}).proven()
# forall_{A} A => Not(Not(A))
Implies(A, Not(Not(A))).generalize(A).qed(__file__)
Exemple #6
0
from proveit.basiclogic.boolean.axioms import iffDef
from proveit.basiclogic.boolean.theorems import impliesTT
from proveit.basiclogic import compose, TRUE, deriveStmtEqTrue
from proveit.common import A, B

# TRUE => TRUE
TimplT = impliesTT.deriveViaBooleanEquality()
# (TRUE => TRUE) and (TRUE => TRUE) = TRUE
TimplTandTimplT_eq_T = deriveStmtEqTrue(compose(TimplT, TimplT))
# (TRUE <=> TRUE) = TRUE
iffDef.specialize({
    A: TRUE,
    B: TRUE
}).applyTransitivity(TimplTandTimplT_eq_T).qed(__file__)
Exemple #7
0
from proveit.basiclogic.boolean.axioms import implicitNotF
from proveit.basiclogic import Not, Implies, Equals, FALSE, deriveStmtEqTrue
from proveit.common import A

# [Not(A) = TRUE] => [A = FALSE]
implicitNotF.specialize().proven()
# [Not(A) = TRUE] assuming Not(A)
deriveStmtEqTrue(Not(A)).proven({Not(A)})
# forall_{A} Not(A) => [A=FALSE]
Implies(Not(A), Equals(A, FALSE)).generalize(A).qed(__file__)
from proveit.basiclogic import Implies, Equals, deriveStmtEqTrue
from proveit.common import x, y, P, Px, Py

# hypothesis = (x=y)
hypothesis = Equals(x, y)
# P(x) = P(y) assuming (x=y)
Px_eq_Py = hypothesis.substitution(Px, x).proven({hypothesis})
# P(x) assuming (x=y), P(y)
deriveStmtEqTrue(Py).applyTransitivity(
    Px_eq_Py).deriveViaBooleanEquality().proven({hypothesis, Py})
# forall_{P, x, y} {(x = y) => [P(x) => P(y)]}, by (nested) hypothetical reasoning
Implies(Equals(x, y), Implies(Py, Px)).generalize((P, x, y)).qed(__file__)
Exemple #9
0
from proveit.basiclogic.boolean.theorems import selfImplication
from proveit.basiclogic import deriveStmtEqTrue, FALSE
from proveit.common import A

deriveStmtEqTrue(selfImplication.specialize({A: FALSE})).qed(__file__)
Exemple #10
0
from proveit.basiclogic import Implies, deriveStmtEqTrue
from proveit.common import A

Implies(A, deriveStmtEqTrue(A).concludeBooleanEquality().deriveReversed()).generalize(A).qed(__file__)
Exemple #11
0
from proveit.basiclogic.boolean.axioms import notT
from proveit.basiclogic import BOOLEANS, FALSE, inBool, Implies, And, Or, Not, deriveStmtEqTrue
from proveit.common import A, B, C, X

AorB = Or(A, B)
hypothesis = And(Implies(A, C), Implies(B, C))
ABCareBool = {inBool(A), inBool(B), inBool(C)}
# A=>C, B=>C assuming (A=>C and B=>C)
AimplC, _ = hypothesis.decompose()
# Not(A) assuming inBool(A), inBool(B), (A=>C and B=>C), Not(C)
AimplC.transpose().deriveConclusion().proven(
    {inBool(A), inBool(C), hypothesis,
     Not(C)})
# B assuming inBool(A, B, C), (A=>C and B=>C), (A or B), Not(C)
AorB.deriveRightIfNotLeft().proven(ABCareBool | {hypothesis, AorB, Not(C)})
# Not(TRUE) assuming inBool(A, B, C), (A=>C and B=>C), (A or B), Not(C)
deriveStmtEqTrue(C).subRightSideInto(
    Not(X), X).proven(ABCareBool | {hypothesis, AorB, Not(C)})
# FALSE assuming inBool(A, B, C), (A=>C and B=>C), (A or B), Not(C)
notT.deriveRightViaEquivalence().proven(
    ABCareBool | {hypothesis, AorB, Not(C)})
# Contradiction proof of C assuming (A=>C and B=>C), (A or B), inBool(A), and inBool(B)
Implies(Not(C),
        FALSE).deriveViaContradiction().proven(ABCareBool | {hypothesis, AorB})
# forall_{A, B, C in BOOLEANS} (A=>C and B=>C) => ((A or B) => C)
Implies(hypothesis, Implies(AorB, C)).generalize((A, B, C),
                                                 domain=BOOLEANS).qed(__file__)
Exemple #12
0
from proveit.basiclogic.boolean.axioms import orTF
from proveit.basiclogic.boolean.theorems import trueNotFalse, trueEqTrue
from proveit.basiclogic import TRUE, FALSE, inBool, Or, Equals, deriveStmtEqTrue
from proveit.common import X

# [TRUE or FALSE]
orTF.deriveViaBooleanEquality().proven()
# [TRUE or TRUE=FALSE] via [TRUE or FALSE] and TRUE != FALSE
trueNotFalse.unfold().equateNegatedToFalse().subLeftSideInto(Or(TRUE, X), X).proven()
# [TRUE=TRUE or TRUE=FALSE] via [TRUE or TRUE=FALSE] and TRUE=TRUE
deriveStmtEqTrue(trueEqTrue).subLeftSideInto(Or(X, Equals(TRUE, FALSE)), X).proven()
# inBool(TRUE) via [TRUE=TRUE or TRUE=FALSE]
inBool(TRUE).concludeAsFolded().qed(__file__)
Exemple #13
0
from proveit.basiclogic import BOOLEANS, TRUE, FALSE, inBool, Implies, And, deriveStmtEqTrue, Equals
from proveit.common import A, P, PofA
from proveit.basiclogic.common import PofTrue, PofFalse

# hypothesis = [P(TRUE) and P(FALSE)]
hypothesis = And(PofTrue, PofFalse)
# inBool(A=TRUE), inBool(A=FALSE), inBool(P(A) = TRUE)
AeqT = Equals(A, TRUE)
AeqF = Equals(A, FALSE)
PofAeqT = Equals(PofA, TRUE)
for eqExpr in (AeqT, AeqF, PofAeqT):
    eqExpr.deduceInBool()
# P(TRUE), P(FALSE) assuming hypothesis
for case in hypothesis.decompose(): case.proven({hypothesis})
# A=TRUE => P(A)=TRUE assuming hypothesis
Implies(AeqT, deriveStmtEqTrue(AeqT.subLeftSideInto(PofA, A))).proven({hypothesis})
# A=FALSE => P(A)=TRUE assuming hypothesis
Implies(AeqF, deriveStmtEqTrue(AeqF.subLeftSideInto(PofA, A))).proven({hypothesis})
# P(A) assuming hypothesis, (A in BOOLEANS)
inBool(A).unfold().deriveCommonConclusion(PofAeqT).deriveViaBooleanEquality().proven({hypothesis, inBool(A)})
# forall_{P} P(TRUE) and P(FALSE) => forall_{A in BOOLEANS} P(A)
Implies(hypothesis, PofA.generalize(A, domain=BOOLEANS)).generalize(P).qed(__file__)
from proveit.basiclogic.boolean.axioms import existsDef
from proveit.basiclogic import Exists, Forall, Not, NotEquals, Implies, In, TRUE, deriveStmtEqTrue
from proveit.common import P, S, X, xEtc, PxEtc, etc_QxEtc, Qetc

inDomain = In(xEtc, S)  # ..x.. in S
# existsNot = [exists_{..x.. in S | ..Q(..x..)..} Not(P(..x..))]
existsNot = Exists(xEtc, Not(PxEtc), S, etc_QxEtc)
# [Not(forall_{..x.. in S | ..Q(..x..)..} Not(P(..x..)) != TRUE] assuming existsNot
existsDef.specialize({
    PxEtc: Not(PxEtc)
}).deriveRightViaEquivalence().proven({existsNot})
# forall_{..x.. in S | ..Q(..x..)..} P(..x..)
forallPx = Forall(xEtc, PxEtc, S, etc_QxEtc)
# forall_{..x.. in S | ..Q(..x..)..} Not(P(..x..)) != TRUE
forallNotPxNotTrue = Forall(xEtc, NotEquals(Not(PxEtc), TRUE), S, etc_QxEtc)
# forallPx in BOOLEANS, forallNotPxNotTrue in BOOLEANS
for expr in (forallPx, forallNotPxNotTrue):
    expr.deduceInBool().proven()
# Not(TRUE) != TRUE
NotEquals(Not(TRUE), TRUE).proveByEval()
# forallNotPxNotTrue assuming forallPx, ..Q(..x..).., In(..x.., S)
deriveStmtEqTrue(forallPx.specialize()).lhsStatementSubstitution(
    NotEquals(Not(X), TRUE), X).deriveConclusion().generalize(
        xEtc, domain=S, conditions=etc_QxEtc).proven({forallPx, inDomain})
# Not(forallNotPxNotTrue) => Not(forallPx)
Implies(forallPx, forallNotPxNotTrue).transpose().proven()
# forall_{P, ..Q.., S} [exists_{..x.. in S | ..Q(..x..)..} Not(P(..x..))] => [Not(forall_{..x.. in S | ..Q(..x..)..} P(..x..)]
Implies(existsNot, Not(forallPx)).generalize((P, Qetc, S)).qed(__file__)
Exemple #15
0
from proveit.basiclogic.boolean.axioms import iffDef
from proveit.basiclogic.boolean.theorems import impliesFF
from proveit.basiclogic import compose, FALSE, deriveStmtEqTrue
from proveit.common import A, B

# FALSE => FALSE
FimplF = impliesFF.deriveViaBooleanEquality()
# (FALSE => FALSE) and (FALSE => FALSE) = TRUE
FimplFandFimplF_eq_T = deriveStmtEqTrue(compose(FimplF, FimplF))
# (FALSE <=> FALSE) = TRUE
iffDef.specialize({
    A: FALSE,
    B: FALSE
}).applyTransitivity(FimplFandFimplF_eq_T).qed(__file__)
Exemple #16
0
from proveit.basiclogic import Forall, Iff, Equals, TRUE, deriveStmtEqTrue
from proveit.common import P, S, xEtc, PxEtc, Qetc, etc_QxEtc

# forallPx = [forall_{..x.. in S | ..Q(..x..)..} P(..x..)]
forallPx = Forall(xEtc, PxEtc, S, etc_QxEtc)
# forallPxEqT = [forall_{..x.. in S | ..Q(..x..)..} {P(..x..)=TRUE}]
forallPxEqT = Forall(xEtc, Equals(PxEtc, TRUE), S, etc_QxEtc)
# forallPxEqT assuming forallPx
deriveStmtEqTrue(forallPx.specialize()).generalize(xEtc, S, etc_QxEtc).proven({forallPx})
# forallPx assuming forallPxEqT
forallPxEqT.specialize().deriveViaBooleanEquality().generalize(xEtc, S, etc_QxEtc).proven({forallPxEqT})
# [forall_{..x.. in S | ..Q(..x..)..} P(..x..)] <=> [forall_{..x.. in S | ..Q(..x..)..} {P(..x..)=TRUE}]
iffForalls = Iff(forallPx, forallPxEqT).concludeViaComposition().proven()
# forallPx in BOOLEANS, forallPxEqT in BOOLEANS
for expr in (forallPx, forallPxEqT):
    expr.deduceInBool()
# forall_{P, ..Q.., S} [forall_{..x.. in S | ..Q(..x..)..} P(..x..)] = [forall_{..x.. in S | ..Q(..x..)..} {P(..x..)=TRUE}]
iffForalls.deriveEquality().generalize((P, Qetc, S)).qed(__file__)
Exemple #17
0
from proveit.basiclogic.boolean.axioms import orFT, falseNotTrue
from proveit.basiclogic.boolean.theorems import falseEqFalse
from proveit.basiclogic import FALSE, inBool, Or, Equals, deriveStmtEqTrue
from proveit.common import X

# [FALSE or TRUE]
orFT.deriveViaBooleanEquality().proven()
# [FALSE or FALSE=FALSE] via [FALSE or TRUE] and FALSE=FALSE
deriveStmtEqTrue(falseEqFalse).subLeftSideInto(Or(FALSE, X), X).proven()
# [FALSE=TRUE or FALSE=FALSE] via [FALSE or FALSE=FALSE] and Not(FALSE=TRUE)
falseNotTrue.unfold().equateNegatedToFalse().subLeftSideInto(
    Or(X, Equals(FALSE, FALSE)), X).proven()
# inBool(FALSE) via [FALSE=TRUE or FALSE=FALSE]
inBool(FALSE).concludeAsFolded().qed(__file__)
Exemple #18
0
from proveit.basiclogic.boolean.theorems import trueAndTrue
from proveit.basiclogic import deriveStmtEqTrue, And, TRUE
from proveit.common import A, B, X

# A=TRUE assuming A
AeqT = deriveStmtEqTrue(A).proven({A})
# B=TRUE assuming B
BeqT = deriveStmtEqTrue(B).proven({B})
# TRUE AND TRUE
trueAndTrue
# (TRUE and B) assuming B via (TRUE and TRUE)
BeqT.subLeftSideInto(And(TRUE, X), X).proven({B})
# (A and B) assuming A, B via (TRUE and TRUE)
AeqT.subLeftSideInto(And(X, B), X).proven({A, B})
# forall_{A | A, B | B} (A and B)
And(A, B).generalize((A, B), conditions=(A, B)).qed(__file__)