Exemple #1
0
def test_lipschitz_approx_class():
    r""" Integration testing
	"""
    fun = psdr.demos.OTLCircuit()
    X = fun.domain.sample_grid(2)
    lip = psdr.LipschitzMatrix()
    lip.fit(grads=fun.grad(X))

    lipapprox = LipschitzApproximation(lip.L, fun.domain)
    X = fun.domain.sample(40)
    fX = fun(X)
    #fX += 0.1*np.random.randn(*fX.shape)
    lipapprox.fit(X, fX[:, 0])

    y = lipapprox(X)
    print(fX[:, 0] - y)
    err = np.max(np.abs(fX[:, 0] - y))
    assert err < 1e-9

    # Check identification of active subspace
    for i in range(1, len(fun.domain)):
        U = lip.U[:, :-i]
        LUU = lip.L @ U @ U.T
        lipapprox = LipschitzApproximation(LUU, fun.domain)
        print(U.shape)
        print(lipapprox.U.shape)
        ang = subspace_angles(U, lipapprox.U)
        print(ang)
        assert np.max(ang) < 1e-7, "Did not correctly identify active subspace"
def test_lipschitz_fixed_U(N = 10, M = 20):
	np.random.seed(0)
	if True:
		fun = psdr.demos.HartmannMHD()
		X = fun.domain.sample(M)
		fX = fun(X)[:,0]
		Xg = fun.domain.sample(N)
		grads = fun.grad(Xg)[:,0,:]
	else:
		fun = psdr.demos.OTLCircuit()
		X = fun.domain.sample(M)
		fX = fun(X)
		Xg = fun.domain.sample(N)
		grads = fun.grad(Xg)

	m = len(fun.domain)
	#grads = np.zeros((0,m))
	X = np.zeros((0,m))
	fX = np.zeros((0,))

	lipr = psdr.PartialLipschitzMatrix(m)
	U = np.eye(m)
	J, alpha = lipr._fixed_U(U, X, fX, grads, 0)
	
	lip = psdr.LipschitzMatrix(method = 'cvxpy')
	lip.fit(X = X, fX = fX, grads = grads)

	assert np.max(np.abs(lip.H - J)) < 1e-3
Exemple #3
0
def test_shadow_lipschitz():
	fun = psdr.demos.OTLCircuit()
	X = fun.domain.sample_grid(2)
	fX = fun(X)
	grads = fun.grad(X)

	lip = psdr.LipschitzMatrix()
	lip.fit(grads = grads)	
	
	ax = lip.shadow_plot(X, fX)
	lip.shadow_uncertainty(fun.domain, X, fX, ax = ax, ngrid = 4, pgfname = 'test_shadow_uncertainty.dat')
	#assert filecmp.cmp(os.path.join(path, 'data/test_shadow_uncertainty.dat'), 'test_shadow_uncertainty.dat') 

	# Test 2-d version
	ax = lip.shadow_plot(X, fX, dim = 2)

	# Test predefined axes
	fig, ax = plt.subplots()
	ax = lip.shadow_plot(X, fX, dim = 1, ax = ax)

	# Test specified U
	ax = lip.shadow_plot(X, fX, U = lip.U[:,0])
	
	# Test specified U
	ax = lip.shadow_plot(X, fX, U = lip.U[:,0:2])
	
	# Test specified U
	ax = lip.shadow_plot(X, fX, U = lip.U[:,0:2], dim = 2)

	# Test writing 2-D output
	lip.shadow_plot(X, fX, ax = None, pgfname = 'test_shadow_uncertainty_2d.dat')
Exemple #4
0
def test_lipschitz_approx(norm, epsilon):
    fun = psdr.demos.Borehole()
    X = fun.domain.sample_grid(2)
    lip = psdr.LipschitzMatrix()
    lip.fit(grads=fun.grad(X))

    # Now generate some random data
    X = fun.domain.sample(50)
    fX = fun(X)

    # Implement for multiple ranks
    for i in range(len(fun.domain)):
        U = lip.U[:, :-i]
        LUU = lip.L @ U @ U.T

        np.random.seed(i)
        fX += epsilon * np.random.randn(*fX.shape)
        y = lipschitz_approximation_compatible_data(LUU,
                                                    X,
                                                    fX[:, 0],
                                                    norm=norm,
                                                    verbose=True)

        err = check_lipschitz_eval(LUU, X, y)
        print("error in data", err)
        assert err < 1e-5
def lipschitz(X, fX, epsilon):
    lip = psdr.LipschitzMatrix(epsilon=epsilon,
                               verbose=True,
                               abstol=1e-7,
                               reltol=1e-7,
                               feastol=1e-7)
    lip.fit(X, fX)
    return lip.L
Exemple #6
0
def build_lipschitz(fun):
    # Estimate the Lipschitz matrix
    lip = psdr.LipschitzMatrix(verbose=True,
                               abstol=1e-7,
                               reltol=1e-7,
                               feastol=1e-7)
    lip.fit(grads=fun.grad(fun.domain.sample_grid(4)))
    L = lip.L
    return L
def generate_X(fun, M):
    np.random.seed(0)
    X = fun.domain.sample(1000)
    grads = fun.grad(X)
    lip = psdr.LipschitzMatrix()
    lip.fit(grads=grads)
    L = lip.L

    X = psdr.minimax_lloyd(fun.domain, M, L=L, verbose=True)
    return X
def generate_X_maximin(fun, M):
    np.random.seed(0)
    X = fun.domain.sample(1000)
    grads = fun.grad(X)
    lip = psdr.LipschitzMatrix(verbose=True,
                               abstol=1e-7,
                               reltol=1e-7,
                               feastol=1e-7)
    lip.fit(grads=grads)
    L = lip.L

    X0 = psdr.maximin_coffeehouse(fun.domain, M, L=L, verbose=True)
    X = psdr.maximin_block(fun.domain, M, L=L, verbose=True, Xhat=X0)
    return X
def test_lipschitz_partial(N = 30, M = 20):
	np.random.seed(0)
	if True:
		fun = psdr.demos.HartmannMHD()
		X = fun.domain.sample(M)
		fX = fun(X)[:,0]
		Xg = fun.domain.sample(N)
		grads = fun.grad(Xg)[:,0,:]
	else:
		fun = psdr.demos.OTLCircuit()
		X = fun.domain.sample(M)
		fX = fun(X)
		Xg = fun.domain.sample(N)
		grads = fun.grad(Xg)
		
	lip1 = psdr.PartialLipschitzMatrix(1, verbose = True, maxiter = 10)
	lip2 = psdr.PartialLipschitzMatrix(2, verbose = True, maxiter = 10)

	for lip in [lip1, lip2 ]:
		for kwargs in [ {'X': X, 'fX': fX}, {'grads':grads}, {'X':X, 'fX': fX, 'grads': grads}]:
			lip.fit(**kwargs)
			err = check_lipschitz(lip.H, **kwargs) 
			print("error", err)
			assert err > -1e-6, "constraints not satisfied"

			# Check square-root L
			err_L = np.max(np.abs(lip.H - lip.L.dot(lip.L))) 
			print("err L", err_L)
			assert err_L < 1e-7
	
	# If we fit an m-1 dimensional case we should get back the true Lipschitz matrix
	# We avoid the low rank problem of points by considering gradients here 
	lip = psdr.LipschitzMatrix()
	lip.fit(grads = grads)
	H = lip.H

	lip3 = psdr.PartialLipschitzMatrix(len(fun.domain)-1, verbose = True, U0 = lip.U[:,0:len(fun.domain)-1])
	lip4 = psdr.PartialLipschitzMatrix(len(fun.domain), verbose = True)
	for lip in [lip3, lip4]:
		lip.fit(grads = grads)
		err = np.max(np.abs(H - lip.H))
		print('error', err)
		assert err < 1e-4, "Did not identify true Lipschitz matrix"
Exemple #10
0
names = []

# OTL circuit function
funs.append(psdr.demos.OTLCircuit())
names.append('otl')

# Borehole
funs.append(psdr.demos.Borehole())
names.append('borehole')

# Wing Weight
funs.append(psdr.demos.WingWeight())
names.append('wing')

act = psdr.ActiveSubspace()
lip = psdr.LipschitzMatrix()

m = max([len(fun.domain) for fun in funs])
pgf = PGF()
pgf.add('i', np.arange(1, m + 1))
for fun, name in zip(funs, names):
    X = fun.domain.sample(1e3)
    grads = fun.grad(X)

    act.fit(grads)
    lip.fit(grads=grads)

    ew = np.nan * np.zeros(m)
    ew[0:len(fun.domain)] = scipy.linalg.eigvalsh(act.C)[::-1]
    pgf.add('%s_C' % name, ew)
    ew[0:len(fun.domain)] = scipy.linalg.eigvalsh(lip.H)[::-1]
Exemple #11
0
import numpy as np
import psdr, psdr.demos

np.random.seed(0)

#fun = psdr.demos.OTLCircuit()
fun = psdr.demos.Borehole()

X = fun.domain.sample(1e2)
grads = fun.grad(X)

lip = psdr.LipschitzMatrix(verbose=True)
lip.fit(grads=grads)

U = lip.U[:, 0:1]
print(U)

# setup an experimental design
X = psdr.minimax_design_1d(fun.domain, 20, L=U.T)
X2 = []
for x in X:
    dom = fun.domain.add_constraints(A_eq=U.T, b_eq=U.T @ x)
    X2.append(dom.sample_boundary(50))

X2 = np.vstack(X2)

fX2 = fun(X2)

pra = psdr.PolynomialRidgeApproximation(9, 1, norm=np.inf)

pra.fit_fixed_subspace(X2, fX2, U)
Exemple #12
0
import psdr.demos
from psdr.pgf import PGF

np.random.seed(0)

fun = psdr.demos.OTLCircuit()

X = fun.domain.sample_grid(2)
fX = fun(X)
gradX = fun.grad(X)

# Grid-based sampling
Xg = fun.domain.sample_grid(8)
fXg = fun(Xg)

lip_mat = psdr.LipschitzMatrix()
lip_con = psdr.LipschitzConstant()

lip_mat.fit(grads=gradX)
lip_con.fit(grads=gradX)

# construct designs
M = 100
ngrid = 100
X_iso = psdr.minimax_lloyd(fun.domain, M)
X_lip = psdr.minimax_lloyd(fun.domain, M, L=lip_mat.L)

# Fix ridge
U = lip_mat.U[:, 0].copy()

# Generate envelope of data
Exemple #13
0
]
alg_names = ['random', 'LHS', 'minimax']

# Number of repetitions
Ms = [100, 100, 10]

Nsamp = 20

for fun, name in zip(funs, names):
    # Estimate the Lipschitz matrix
    np.random.seed(0)
    X = np.vstack([fun.domain.sample(1000), fun.domain.sample_grid(2)])
    grads = fun.grad(X)

    lip = psdr.LipschitzMatrix(verbose=True,
                               reltol=1e-7,
                               abstol=1e-7,
                               feastol=1e-7)
    lip.fit(grads=grads)

    L = lip.L

    plt.clf()

    # Samples to use when estimating dispersion
    #X0 = psdr.maximin_coffeehouse(fun.domain, 5000, L = L, N0 = 50)
    X0 = np.vstack(
        [psdr.random_sample(fun.domain, 5000),
         fun.domain.sample_grid(2)])

    plt.clf()
Exemple #14
0
fun_true = psdr.Function(lambda x: partial_trace_fun(x, tol = 1e-4), domain)

X = fun.domain.sample_grid(10)
#np.random.seed(0)
#X = fun.domain.sample(200)
fX = fun(X)
fX_true = fun_true(X)


epsilon = float(max(np.abs(fX - fX_true)))
#epsilon = 0.2*np.max(np.abs(fX_true))
#print(np.max(fX_true))
#print(epsilon)

lip = psdr.LipschitzMatrix(verbose = True)
lip.fit(X, fX)
print("========noisy=========")
print("L", lip.L)
print(np.linalg.norm(lip.L, 'fro'))
ew, ev = np.linalg.eigh(lip.L)
print("ew", ew)
print("ev", ev)

lip.fit(X, fX_true)
print("========true=========")
print("L", lip.L)
print(np.linalg.norm(lip.L, 'fro'))
ew, ev = np.linalg.eigh(lip.L)
print("ew", ew)
print("ev", ev)