Exemple #1
0
def test_golden_section():
    """Test golden section method on a simple example"""
    import numpy as np
    from psecas import golden_section

    def f(x):
        return (x - 2)**2

    tol = 1e-8
    (c, d) = golden_section(f, 1, 5, tol)
    print(c, d)
    np.testing.assert_allclose(c, 2.0, tol)
    np.testing.assert_allclose(d, 2.0, tol)
Exemple #2
0
if False:
    from psecas import golden_section

    def f(kx):
        grid = FourierGrid(N=64, zmin=0.0, zmax=2.0)
        system = KelvinHelmholtzHydroOnly(grid, u0=1.0, delta=1.0, kx=kx)
        solver = Solver(grid, system)

        Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 12) * 32))
        omega, v, err = solver.iterate_solver(Ns, verbose=False, tol=1e-8)

        return -omega.real

    a = 3.512831867406509
    b = 3.512831875508205
    (a, b) = golden_section(f, a, b, tol=1e-8)

# Create initial conditions for Athena simulation
if True:
    from psecas import save_system

    kxmax = 3.5128319
    grid = FourierGrid(N=256, zmin=0.0, zmax=2.0)
    system = KelvinHelmholtzHydroOnly(grid, u0=1.0, delta=1.0, kx=kxmax)
    solver = Solver(grid, system)

    Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 12) * 32))
    omega, v, err = solver.iterate_solver(Ns, verbose=True, tol=1e-8)

    # Normalize eigenmodes
    y = np.vstack([
Exemple #3
0
    Using golden_section is much cheaper than calculating the growth rate for
    a fine mesh of wave vectors and taking the maximum.
"""


def f(kx, **kwargs):

    # Set up a grid
    grid = FourierGrid(N=64, zmin=0, zmax=2)
    system = KelvinHelmholtzUniform(grid, beta=1e3, nu=0, kx=kx)

    if 'nu' in kwargs.keys():
        system.nu = kwargs['nu']

    # Set up a solver
    solver = Solver(grid, system)

    # Iteratively solve
    Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 12) * 32))
    omega, v, err = solver.iterate_solver(Ns, verbose=False, tol=1e-4)

    return -omega.real


(a, b) = golden_section(f, 3.0, 6, tol=1e-3, nu=0.0)
print(a, b, (a + b) / 2, -f((a + b) / 2))
(a, b) = golden_section(f, 3.0, 6, tol=1e-3, nu=1e-2)
print(a, b, (a + b) / 2, -f((a + b) / 2))
(a, b) = golden_section(f, 3.0, 6, tol=1e-3, nu=1e-1)
print(a, b, (a + b) / 2, -f((a + b) / 2))
Exemple #4
0
# Find the kx that gives maximum growth
if False:
    from psecas import golden_section

    def f(kx):
        grid = FourierGrid(N=64, zmin=0.0, zmax=2.0)
        system = KelvinHelmholtzHydroOnly(grid, u0=1.0, delta=0.0, kx=kx)
        solver = Solver(grid, system)

        Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 20) * 32))
        omega, v, err = solver.iterate_solver(Ns, verbose=False, tol=1e-8)

        return -omega.real

    (a, b) = golden_section(f, 5.148550549911674, 5.158147443539172, tol=1e-8)
    a = 5.1540899488183065
    b = 5.154089957164513

# Create initial conditions for Athena simulation
if True:
    from psecas import save_system

    kxmax = 5.1540899
    grid = FourierGrid(N=256, zmin=0.0, zmax=2.0)
    system = KelvinHelmholtzHydroOnly(grid, u0=1.0, delta=0.0, kx=kxmax)
    solver = Solver(grid, system)

    Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 20) * 32))
    omega, v, err = solver.iterate_solver(Ns, verbose=True, tol=1e-10)
Exemple #5
0
# Find the kx that gives maximum growth
if False:
    from psecas import golden_section

    def f(kx):
        grid = FourierGrid(N=64, zmin=0.0, zmax=2.0)
        system = KelvinHelmholtzHydroOnly(grid, u0=1.0, delta=1.0, kx=kx)
        solver = Solver(grid, system)

        Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 12) * 32))
        omega, v, err = solver.iterate_solver(Ns, verbose=False, tol=1e-6)

        return -omega.real

    (a, b) = golden_section(f, 3.512295, 3.513135, tol=1e-5)

# Create initial conditions for Athena simulation
if False:
    from psecas import write_athena, save_system

    kxmax = 3.5128286141291243
    grid = FourierGrid(N=64, zmin=0.0, zmax=2.0)
    system = KelvinHelmholtzHydroOnly(grid, u0=1.0, delta=1.0, kx=kxmax)
    solver = Solver(grid, system)

    Ns = np.hstack((np.arange(1, 5) * 16, np.arange(3, 12) * 32))
    omega, v, err = solver.iterate_solver(Ns, verbose=False, tol=1e-6)

    # Write files for loading into Athena
    # write_athena(system, Nz=256, Lz=2.0)