Exemple #1
0
    def _build_map_with_rangeCoordMat(self, y_rangeCoordMat, x_rangeCoordMat):
        # Round y and x coord into int
        y_rangeCoordMat = (np.round(y_rangeCoordMat)).astype(np.int)
        x_rangeCoordMat = (np.round(x_rangeCoordMat)).astype(np.int)
        """ Check for index of y_mat and x_mat that are within the world """
        inBound_ind = util.within_bound(
            np.array([y_rangeCoordMat, x_rangeCoordMat]), self.world.shape)
        """ delete coordinate that are not within the bound """
        outside_ind = np.argmax(~inBound_ind, axis=1)
        ok_ind = np.where(outside_ind == 0)[0]
        need_amend_ind = np.where(outside_ind != 0)[0]
        outside_ind = np.delete(outside_ind, ok_ind)

        inside_ind = np.copy(outside_ind)
        inside_ind[inside_ind != 0] -= 1
        bound_ele_x = x_rangeCoordMat[need_amend_ind, inside_ind]
        bound_ele_y = y_rangeCoordMat[need_amend_ind, inside_ind]

        count = 0
        for i in need_amend_ind:
            x_rangeCoordMat[i, ~inBound_ind[i, :]] = bound_ele_x[count]
            y_rangeCoordMat[i, ~inBound_ind[i, :]] = bound_ele_y[count]
            count += 1
        """ find obstacle along the laser range """
        obstacle_ind = np.argmax(
            self.world[y_rangeCoordMat,
                       x_rangeCoordMat] == self.map_color['obstacle'],
            axis=1)
        obstacle_ind[obstacle_ind == 0] = x_rangeCoordMat.shape[1]
        """ generate a matrix of [[1,2,3,...],[1,2,3...],[1,2,3,...],...] for comparing with the obstacle coord """
        bx = np.arange(x_rangeCoordMat.shape[1]).reshape(
            1, x_rangeCoordMat.shape[1])
        by = np.ones((x_rangeCoordMat.shape[0], 1))
        b = np.matmul(by, bx)
        """ get the coord that the robot can percieve (ignore pixel beyond obstacle) """
        b = b <= obstacle_ind.reshape(obstacle_ind.shape[0], 1)
        y_coord = y_rangeCoordMat[b]
        x_coord = x_rangeCoordMat[b]
        """ no slam error """
        # self.slamMap[y_coord, x_coord] = self.world[y_coord, x_coord]
        """ laser noise """
        # [y_noise_ind,x_noise_ind, y_coord,x_coord]= self._laser_noise(y_rangeCoordMat,x_rangeCoordMat,y_coord,x_coord,b)
        # self.slamMap[y_noise_ind,x_noise_ind]= self.world[y_coord,x_coord]
        #
        """ slam matching error """
        # [y_err_ind,x_err_ind, y_coord,x_coord] = self._slam_error(y_coord,x_coord)
        # self.slamMap[y_err_ind,x_err_ind]= self.world[y_coord,x_coord]
        """ laser noise + slam matching error """
        [y_all_noise, x_all_noise, y_coord,
         x_coord] = self._laser_slam_error(y_rangeCoordMat, x_rangeCoordMat,
                                           y_coord, x_coord, b)
        self.slamMap[y_all_noise, x_all_noise] = self.world[y_coord, x_coord]
        """ dilate/close to fill the holes """
        # self.dslamMap= cv2.morphologyEx(self.slamMap,cv2.MORPH_CLOSE,np.ones((3,3)))
        self.dslamMap = cv2.dilate(self.slamMap, np.ones((3, 3)), iterations=1)
        return self.slamMap
Exemple #2
0
    def robotCrashed(self, pose):
        if ~util.within_bound(pose, self.world.shape, self.robotRadius):
            return True

        py = np.round(pose[0]).astype(int)
        px = np.round(pose[1]).astype(int)
        r = self.robotRadius

        # make a circle patch around robot location and check if there is obstacle pixel inside the circle
        robotPatch, _ = util.make_circle(r, 1)
        worldPatch = self.world[py - r:py + r + 1, px - r:px + r + 1]
        worldPatch = worldPatch * robotPatch

        return np.sum(worldPatch == self.map_color["obstacle"]) != 0
Exemple #3
0
    def _laser_slam_error(self, y_rangeCoordMat, x_rangeCoordMat, y_coord,
                          x_coord, b):
        [y_noise_rangeCoordMat, x_noise_rangeCoordMat, y_coord,
         x_coord] = self._laser_noise(y_rangeCoordMat, x_rangeCoordMat,
                                      y_coord, x_coord, b)
        [y_err_coord, x_err_coord, y_noise_ind,
         x_noise_ind] = self._slam_error(y_noise_rangeCoordMat,
                                         x_noise_rangeCoordMat)

        inBound_ind = util.within_bound(np.array([y_err_coord, x_err_coord]),
                                        self.world.shape)
        y_coord = y_coord[inBound_ind]
        x_coord = x_coord[inBound_ind]
        return y_err_coord, x_err_coord, y_coord, x_coord
Exemple #4
0
    def _slam_error(self, y_coord, x_coord):

        err_y = util.gauss_noise() * self.slamErr_linear
        err_x = util.gauss_noise() * self.slamErr_linear
        err_theta = util.gauss_noise() * self.slamErr_angular
        """ rotate y_coord & x_coord by err_theta """
        (y_coord_err, x_coord_err) = util.transform_coord(
            y_coord, x_coord, self.robotPose,
            np.array([err_y, err_x, err_theta]))
        """ check for index where the coord are within bound """
        inBound_ind = util.within_bound(np.array([y_coord_err, x_coord_err]),
                                        self.world.shape)
        x_err_coord = x_coord_err[inBound_ind]
        y_err_coord = y_coord_err[inBound_ind]

        x_coord = x_coord.reshape(x_coord.shape[0], 1)[inBound_ind]
        y_coord = y_coord.reshape(y_coord.shape[0], 1)[inBound_ind]

        return y_err_coord, x_err_coord, y_coord, x_coord
Exemple #5
0
    def _laser_noise(self, y_rangeCoordMat, x_rangeCoordMat, y_coord, x_coord,
                     b):
        """ add laser noise, y_&x_coord are coord before obstacle | y_&x_rangeCoordMat are coord that the laser range covers
        b is the vector that represent the index of rangeCoordMat where the coord are before obstacle """

        noise_vector = np.random.normal(loc=0,
                                        scale=self.laser_noiseSigma,
                                        size=(x_rangeCoordMat.shape[0], 1))
        noise_vector = np.round(noise_vector).astype(np.int64)
        """ add noise to rangeCoordMat  """
        y_rangeCoordMat += noise_vector
        x_rangeCoordMat += noise_vector
        y_noise_coord = y_rangeCoordMat[b]
        x_noise_coord = x_rangeCoordMat[b]
        """ check for index of the coord that are within bound of world """
        inBound_ind = util.within_bound(
            np.array([y_noise_coord, x_noise_coord]), self.world.shape)
        """ get the coord that are within bound """
        x_noise_coord = x_noise_coord[inBound_ind]
        y_noise_coord = y_noise_coord[inBound_ind]
        x_coord = x_coord[inBound_ind]
        y_coord = y_coord[inBound_ind]

        return y_noise_coord, x_noise_coord, y_coord, x_coord