Exemple #1
0
def get_spectra_and_std(my_spec, name, test):
    lb, ps = so_spectra.read_ps("spectra_%s/spectra/Dl_%s_cross.dat" %
                                (my_spec, name),
                                spectra=spectra)
    lb, noise = so_spectra.read_ps("spectra_%s/spectra/Dl_%s_noise.dat" %
                                   (my_spec, name),
                                   spectra=spectra)

    cov = np.load("covariances_%s/covariances/analytic_cov_%s_%s.npy" %
                  (my_spec, name, name))
    cov = so_cov.selectblock(cov, ["TT", "TE", "ET", "EE"],
                             n_bins=len(lb),
                             block="%s%s" % (test, test))
    std = np.sqrt(cov.diagonal())

    return lb, ps[test], noise[test], cov, std
Exemple #2
0
            arrays_2 = d["arrays_%s" % sv2]
            for id_ar2, ar2 in enumerate(arrays_2):
                freq2 = d["nu_eff_%s_%s" % (sv2, ar2)]

                if (id_sv1 == id_sv2) & (id_ar1 > id_ar2): continue
                if (id_sv1 > id_sv2): continue

                combin = "%s_%sx%s_%s" % (sv1, ar1, sv2, ar2)
                spec_name = "%s_%s_%s" % (type, combin, kind)

                lb, Db = so_spectra.read_ps("%s/%s.dat" % (specDir, spec_name),
                                            spectra=spectra)

                cov = np.load("%s/analytic_cov_%s_%s.npy" %
                              (cov_dir, combin, combin))
                cov = so_cov.selectblock(cov, ["TT", "TE", "ET", "EE"],
                                         n_bins=len(lb),
                                         block="TT")

                std = np.sqrt(cov.diagonal())

                lp, clp, errorp = np.loadtxt(planck_data_dir +
                                             "spectrum_TT_100x100.dat")

                plt.errorbar(lb,
                             Db[spec],
                             std,
                             fmt=".",
                             label="%s_%s" % (spec, combin),
                             color=c)
Exemple #3
0
            # TT+TE+EE chi2
            ps1_ttteee = np.concatenate([ps1[mode] for mode in modes])
            ps2_ttteee = np.concatenate([ps2[mode] for mode in modes])
            residual_ps = ps1_ttteee - ps2_ttteee
            chi2 = residual_ps @ np.linalg.solve(res_cov, residual_ps)
            chi2_dict["all", surv1, surv2, spec1,
                      spec2] = [chi2, len(residual_ps)]
            line.append(chi2)
            ndof_line.append(len(residual_ps))

            # Loop on TT, TE, ET, EE
            for mode in modes:

                # Select block
                res_covblock = so_cov.selectblock(res_cov,
                                                  modes,
                                                  n_bins=len(lb),
                                                  block=mode + mode)

                # Compute power spectrum and errors
                res_std = np.sqrt(res_covblock.diagonal())
                res_ps = ps1[mode] - ps2[mode]

                # Compute chi2
                chi2 = res_ps @ np.linalg.solve(res_covblock, res_ps)
                chi2_dict[mode, surv1, surv2, spec1, spec2] = [chi2, len(lb)]
                line.append(chi2)
                ndof_line.append(len(lb))

                # Low-ell (ell < 1000) chi2
                id_low = np.where(lb < 1000)
                low_ps = res_ps[id_low]
Exemple #4
0
        for id_sv1, sv1 in enumerate(surveys):
            for id_sv2, sv2 in enumerate(surveys):

                if (id_sv1 > id_sv2): continue
                combin = "%s_%sx%s_%s" % (sv1, ar, sv2, ar)
                print("producing plots for : ", combin)
                spec_name = "%s_%s_%s" % (type, combin, "cross")

                lb, Db = so_spectra.read_ps("%s/%s.dat" % (specDir, spec_name),
                                            spectra=spectra)
                cov = np.load("%s/analytic_cov_%s_%s.npy" %
                              (cov_dir, combin, combin))

                cov_select = so_cov.selectblock(cov, ["TT", "TE", "ET", "EE"],
                                                n_bins=len(lb),
                                                block=spec + spec)
                std = np.sqrt(cov_select.diagonal())

                if (sv1 == sv2):
                    if spec == "TE":
                        Db["TE"] = (Db["TE"] + Db["ET"]) / 2

                _, f = ar.split("_")

                f_choi = f
                if f == "f220": f_choi = "f150"

                if spec == "TT":
                    plt.semilogy()
Exemple #5
0
            binning_file, lmax)
        n_bins = len(bin_hi)

        plt.figure(figsize=(15, 15))
        plt.suptitle(
            "%s %s (press c/v to switch between covariance matrix elements)" %
            (spec1, spec2),
            fontsize=30)
        count = 1
        for bl in [
                "TTTT", "TETE", "ETET", "EEEE", "TTTE", "TTEE", "TTET", "TEET",
                "TEEE", "ETEE", "EETE", "EEET", "ETTE", "ETTT", "EETT", "TETT"
        ]:

            mc_cov_sub = so_cov.selectblock(mc_cov, ["TT", "TE", "ET", "EE"],
                                            n_bins,
                                            block=bl)
            analytic_cov_sub = so_cov.selectblock(analytic_cov,
                                                  ["TT", "TE", "ET", "EE"],
                                                  n_bins,
                                                  block=bl)

            var = mc_cov_sub.diagonal()
            analytic_var = analytic_cov_sub.diagonal()

            plt.subplot(3, 6, count)
            if count == 1:
                plt.semilogy()
            plt.plot(lb[1:],
                     var[1:],
                     ".",
pspy_utils.create_directory(plot_dir)

# Check effect of weighting
for bl in ["TTTT", "TETE", "EEEE"]:
    for scan in scan_list:
        for run in runs:
            _name = "%s_%sx%s_%s" % (scan, "split0", "split0", run)
            lb, _ = so_spectra.read_ps("%s/spectra_%s.dat" %
                                       (spectra_dir, _name),
                                       spectra=spectra)
            n_bins = len(lb)

            cov = np.load("%s/analytic_cov_%s_%s.npy" % (cov_dir, scan, run))
            cov_select = so_cov.selectblock(cov, ["TT", "TE", "ET", "EE"],
                                            n_bins,
                                            block=bl)

            var = cov_select.diagonal()

            plt.plot(lb, np.sqrt(var), label=run)

        plt.title(r"$\sigma^{%s}_{\ell}$, %s" % (bl, scan), fontsize=14)
        plt.xlabel(r"$\ell$", fontsize=14)

        plt.legend()

        plt.savefig("%s/sigma_%s_%s.png" % (plot_dir, bl, scan),
                    bbox_inches="tight")
        plt.clf()
        plt.close()
            cov_dir +
            "analytic_cov_{0}_{1}.npy".format(cross_name, actxact_name))

    TT_actxact = ps_actxact["TT"]
    TT_actxplanck = ps_actxplanck["TT"]

    id = np.where((lb >= lmin[act_map]) & (lb <= lmax))

    TT_actxact = TT_actxact[id]
    TT_actxplanck = TT_actxplanck[id]

    TT = {"actxact": TT_actxact, "actxplanck": TT_actxplanck}

    for key in cov:
        cov[key] = so_cov.selectblock(cov[key],
                                      modes,
                                      n_bins=len(lb),
                                      block="TTTT")
        cov[key] = cov[key][np.ix_(id[0], id[0])]

    spectra_and_covariances[act_map] = (TT, cov)

for act_map in reference_maps:
    TT, TT_cov = spectra_and_covariances[act_map]

    def loglike(c):

        #PlanckxPlanck - ACTxPLanck
        res_ps = c**2 * TT["actxact"] - c * TT["actxplanck"]
        res_cov = c**2 * (c**2 * TT_cov["actxact_actxact"] +
                          TT_cov["actxplanck_actxplanck"] -
                          2 * c * TT_cov["actxact_actxplanck"])