Exemple #1
0
def test_integrator_function_with_default_variable_and_params_of_different_lengths():
    with pytest.raises(FunctionError) as error_text:
        AdaptiveIntegrator(default_variable=[0,0,0], rate=[.1, .2, .3], offset=[.4,.5])
    error_msg_a = "The following parameters with len>1 specified for AdaptiveIntegrator Function"
    error_msg_b = "don't have the same length as its 'default_variable' (3): ['offset']."
    assert error_msg_a in str(error_text.value)
    assert error_msg_b in str(error_text.value)
Exemple #2
0
def test_integrator_function_with_params_of_different_lengths():
    with pytest.raises(FunctionError) as error_text:
        AdaptiveIntegrator(rate=[.1, .2, .3], offset=[.4,.5])
    error_msg_a = "The parameters with len>1 specified for AdaptiveIntegrator Function"
    error_msg_b = "(['rate', 'offset']) don't all have the same length"
    assert error_msg_a in str(error_text.value)
    assert error_msg_b in str(error_text.value)
Exemple #3
0
def test_integrator_function_default_variable_and_params_len_more_than_1_error():
    with pytest.raises(FunctionError) as error_text:
        AdaptiveIntegrator(default_variable=[0,0], rate=[.1, .2, .3])
    error_msg_a = 'The length (3) of the array specified for the rate parameter'
    error_msg_b = 'must match the length (2) of the default input ([0 0])'
    assert error_msg_a in str(error_text.value)
    assert error_msg_b in str(error_text.value)
Exemple #4
0
def test_nested_composition_run_trials_inputs(benchmark, executions, mode):
    benchmark.group = "Nested Composition mutliple trials/inputs multirun {}".format(
        executions)

    # mechanisms
    A = ProcessingMechanism(name="A", function=AdaptiveIntegrator(rate=0.1))
    B = ProcessingMechanism(name="B", function=Logistic)

    inner_comp = Composition(name="inner_comp")
    inner_comp.add_linear_processing_pathway([A, B])
    inner_comp._analyze_graph()
    sched = Scheduler(composition=inner_comp)

    outer_comp = Composition(name="outer_comp")
    outer_comp.add_node(inner_comp)

    outer_comp._analyze_graph()
    sched = Scheduler(composition=outer_comp)

    # The input dict should assign inputs origin nodes (inner_comp in this case)
    var = {inner_comp: [[[2.0]], [[3.0]]]}
    expected = [[[0.549833997312478]], [[0.617747874769249]],
                [[0.6529428177055896]], [[0.7044959416252289]]]
    if executions > 1:
        var = [var for _ in range(executions)]
    if mode == 'Python':

        def f(v, num_trials, res=False):
            results = []
            for i in range(executions):
                outer_comp.run(v[i], execution_id=i, num_trials=num_trials)
                if res:  # copy the results immediately, otherwise it's empty
                    results.append(outer_comp.results.copy())
            return results

        res = f(var, 4, True) if executions > 1 else f([var], 4, True)
        benchmark(f if executions > 1 else outer_comp.run, var, num_trials=4)
    elif mode == 'LLVM':
        e = pnlvm.execution.CompExecution(outer_comp,
                                          [None for _ in range(executions)])
        res = e.run(var, 4, 2)
        benchmark(e.run, var, 4, 2)
    elif mode == 'PTX':
        e = pnlvm.execution.CompExecution(outer_comp,
                                          [None for _ in range(executions)])
        res = e.cuda_run(var, 4, 2)
        benchmark(e.cuda_run, var, 4, 2)

    assert np.allclose(res, [expected for _ in range(executions)])
    assert len(res) == executions or executions == 1
Exemple #5
0
    class Parameters(ProcessingMechanism_Base.Parameters):
        """
            Attributes
            ----------

                function
                    see `function <IntegratorMechanism.function>`

                    :default value: `AdaptiveIntegrator`(initializer=numpy.array([0]), rate=0.5)
                    :type: `Function`
        """
        function = Parameter(AdaptiveIntegrator(rate=0.5),
                             stateful=False,
                             loggable=False)
Exemple #6
0
def test_nested_composition_execution(benchmark, executions, mode):
    benchmark.group = "Nested Composition execution multirun {}".format(
        executions)

    # mechanisms
    A = ProcessingMechanism(name="A", function=AdaptiveIntegrator(rate=0.1))
    B = ProcessingMechanism(name="B", function=Logistic)

    inner_comp = Composition(name="inner_comp")
    inner_comp.add_linear_processing_pathway([A, B])
    inner_comp._analyze_graph()
    sched = Scheduler(composition=inner_comp)

    outer_comp = Composition(name="outer_comp")
    outer_comp.add_node(inner_comp)

    outer_comp._analyze_graph()
    sched = Scheduler(composition=outer_comp)

    # The input dict should assign inputs origin nodes (inner_comp in this case)
    var = {inner_comp: [[1.0]]}
    expected = [[0.52497918747894]]
    if executions > 1:
        var = [var for _ in range(executions)]
    if mode == 'Python':
        f = lambda x: [
            outer_comp.execute(x[i], execution_id=i) for i in range(executions)
        ]
        res = f(var) if executions > 1 else outer_comp.execute(var)
        benchmark(f if executions > 1 else outer_comp.execute, var)
    elif mode == 'LLVM':
        e = pnlvm.execution.CompExecution(outer_comp,
                                          [None for _ in range(executions)])
        e.execute(var)
        res = e.extract_node_output(outer_comp.output_CIM)
        benchmark(e.execute, var)
    elif mode == 'PTX':
        e = pnlvm.execution.CompExecution(outer_comp,
                                          [None for _ in range(executions)])
        e.cuda_execute(var)
        res = e.extract_node_output(outer_comp.output_CIM)
        benchmark(e.cuda_execute, var)

    assert np.allclose(res, [expected for _ in range(executions)])
    assert len(res) == executions
Exemple #7
0
def test_integrator_function_no_default_variable_and_params_len_more_than_1():
    I = AdaptiveIntegrator(rate=[.1, .2, .3])
    I.defaults.variable = np.array([0,0,0])