Exemple #1
0
    def test_reset_run(self):

        L = LCAMechanism(name="L",
                         function=Linear,
                         initial_value=0.5,
                         integrator_mode=True,
                         leak=0.1,
                         competition=0,
                         self_excitation=1.0,
                         time_step_size=1.0,
                         noise=0.0)
        C = Composition(pathways=[L])

        L.reset_stateful_function_when = Never()
        assert np.allclose(L.integrator_function.previous_value, 0.5)
        assert np.allclose(L.initial_value, 0.5)
        assert np.allclose(L.integrator_function.initializer, 0.5)

        C.run(
            inputs={L: 1.0},
            num_trials=2,
            # reset_stateful_functions_when=AtRunStart(),
            # reset_stateful_functions_when=AtTrialStart(),
            initialize_cycle_values={L: [0.0]})

        # IntegratorFunction fn: previous_value + (rate*previous_value + new_value)*time_step_size + noise*(time_step_size**0.5)

        # Trial 1    |   variable = 1.0 + 0.0
        # integration: 0.5 + (0.1*0.5 + 1.0)*1.0 + 0.0 = 1.55
        # linear fn: 1.55*1.0 = 1.55
        # Trial 2    |   variable = 1.0 + 1.55
        # integration: 1.55 + (0.1*1.55 + 2.55)*1.0 + 0.0 = 4.255
        #  linear fn: 4.255*1.0 = 4.255
        assert np.allclose(
            L.integrator_function.parameters.previous_value.get(C), 3.755)

        L.integrator_function.reset(0.9, context=C)

        assert np.allclose(
            L.integrator_function.parameters.previous_value.get(C), 0.9)
        assert np.allclose(L.parameters.value.get(C), 3.755)

        L.reset(0.5, context=C)

        assert np.allclose(
            L.integrator_function.parameters.previous_value.get(C), 0.5)
        assert np.allclose(L.parameters.value.get(C), 0.5)

        C.run(inputs={L: 1.0}, num_trials=2)
        # Trial 3    |   variable = 1.0 + 0.5
        # integration: 0.5 + (0.1*0.5 + 1.5)*1.0 + 0.0 = 2.05
        # linear fn: 2.05*1.0 = 2.05
        # Trial 4    |   variable = 1.0 + 2.05
        # integration: 2.05 + (0.1*2.05 + 3.05)*1.0 + 0.0 = 5.305
        #  linear fn: 5.305*1.0 = 5.305
        assert np.allclose(
            L.integrator_function.parameters.previous_value.get(C), 4.705)
        assert np.allclose(L.initial_value, 0.5)
        assert np.allclose(L.integrator_function.initializer, 0.5)
Exemple #2
0
    def test_LCAMechanism_length_2(self, benchmark, mode):
        # Note: since the LCAMechanism's threshold is not specified in this test, each execution only updates
        #       the Mechanism once.

        T = TransferMechanism(function=Linear(slope=1.0), size=2)
        L = LCAMechanism(function=Linear(slope=2.0),
                         size=2,
                         self_excitation=3.0,
                         leak=0.5,
                         competition=1.0,
                         time_step_size=0.1)

        C = Composition()
        C.add_linear_processing_pathway([T,L])
        L.reset_stateful_function_when = Never()
        #  - - - - - - - Equations to be executed  - - - - - - -

        # new_transfer_input =
        # previous_transfer_input
        # + (leak * previous_transfer_input_1 + self_excitation * result1 + competition * result2 + outside_input1) * dt
        # + noise

        # result = new_transfer_input*2.0

        # recurrent_matrix = [[3.0]]

        #  - - - - - - - - - - - - - -  - - - - - - - - - - - -

        C.run(inputs={T: [1.0, 2.0]}, num_trials=3, bin_execute=mode)

        # - - - - - - - TRIAL 1 - - - - - - -

        # new_transfer_input_1 = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 - 1.0*0.0 + 1.0)*0.1 + 0.0    =    0.1
        # f(new_transfer_input_1) = 0.1 * 2.0 = 0.2

        # new_transfer_input_2 = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 - 1.0*0.0 + 2.0)*0.1 + 0.0    =    0.2
        # f(new_transfer_input_2) = 0.2 * 2.0 = 0.4

        # - - - - - - - TRIAL 2 - - - - - - -

        # new_transfer_input = 0.1 + ( 0.5 * 0.1 + 3.0 * 0.2 - 1.0*0.4 + 1.0)*0.1 + 0.0    =    0.225
        # f(new_transfer_input) = 0.265 * 2.0 = 0.45

        # new_transfer_input_2 = 0.2 + ( 0.5 * 0.2 + 3.0 * 0.4 - 1.0*0.2 + 2.0)*0.1 + 0.0    =    0.51
        # f(new_transfer_input_2) = 0.1 * 2.0 = 1.02

        # - - - - - - - TRIAL 3 - - - - - - -

        # new_transfer_input = 0.225 + ( 0.5 * 0.225 + 3.0 * 0.45 - 1.0*1.02 + 1.0)*0.1 + 0.0    =    0.36925
        # f(new_transfer_input) = 0.36925 * 2.0 = 0.7385

        # new_transfer_input_2 = 0.51 + ( 0.5 * 0.51 + 3.0 * 1.02 - 1.0*0.45 + 2.0)*0.1 + 0.0    =    0.9965
        # f(new_transfer_input_2) = 0.9965 * 2.0 = 1.463

        assert np.allclose(C.results, [[[0.2, 0.4]], [[0.43, 0.98]], [[0.6705, 1.833]]])
        if benchmark.enabled:
            benchmark(C.run, inputs={T: [1.0, 2.0]}, num_trials=3, bin_execute=mode)
Exemple #3
0
    def test_LCAMechanism_length_1(self, benchmark, comp_mode):
        T = TransferMechanism(function=Linear(slope=1.0))
        L = LCAMechanism(
            function=Linear(slope=2.0),
            self_excitation=3.0,
            leak=0.5,
            competition=
            1.0,  #  competition does not matter because we only have one unit
            time_step_size=0.1)
        C = Composition()
        C.add_linear_processing_pathway([T, L])
        L.reset_stateful_function_when = Never()
        #  - - - - - - - Equations to be executed  - - - - - - -

        # new_transfer_input =
        # previous_transfer_input
        # + (leak * previous_transfer_input_1 + self_excitation * result1 + competition * result2 + outside_input1) * dt
        # + noise

        # result = new_transfer_input*2.0

        # recurrent_matrix = [[3.0]]

        #  - - - - - - - - - - - - - -  - - - - - - - - - - - -

        C.run(inputs={T: [1.0]}, num_trials=3, execution_mode=comp_mode)

        # - - - - - - - TRIAL 1 - - - - - - -

        # new_transfer_input = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 + 0.0 + 1.0)*0.1 + 0.0    =    0.1
        # f(new_transfer_input) = 0.1 * 2.0 = 0.2

        # - - - - - - - TRIAL 2 - - - - - - -

        # new_transfer_input = 0.1 + ( 0.5 * 0.1 + 3.0 * 0.2 + 0.0 + 1.0)*0.1 + 0.0    =    0.265
        # f(new_transfer_input) = 0.265 * 2.0 = 0.53

        # - - - - - - - TRIAL 3 - - - - - - -

        # new_transfer_input = 0.265 + ( 0.5 * 0.265 + 3.0 * 0.53 + 0.0 + 1.0)*0.1 + 0.0    =    0.53725
        # f(new_transfer_input) = 0.53725 * 2.0 = 1.0745

        assert np.allclose(C.results, [[[0.2]], [[0.51]], [[0.9905]]])
        if benchmark.enabled:
            benchmark(C.run,
                      inputs={T: [1.0]},
                      num_trials=3,
                      execution_mode=comp_mode)