def test_model_based_ocm_with_buffer(self): A = pnl.ProcessingMechanism(name='A') B = pnl.ProcessingMechanism(name='B') comp = pnl.Composition(name='comp', controller_mode=pnl.BEFORE) comp.add_linear_processing_pathway([A, B]) search_range = pnl.SampleSpec(start=0.25, stop=0.75, step=0.25) control_signal = pnl.ControlSignal( projections=[(pnl.SLOPE, A)], function=pnl.Linear, variable=1.0, allocation_samples=search_range, intensity_cost_function=pnl.Linear(slope=0.)) objective_mech = pnl.ObjectiveMechanism(monitor=[B]) ocm = pnl.OptimizationControlMechanism( agent_rep=comp, features=[A.input_state], feature_function=pnl.Buffer(history=2), objective_mechanism=objective_mech, function=pnl.GridSearch(), control_signals=[control_signal]) objective_mech.log.set_log_conditions(pnl.OUTCOME) comp.add_controller(ocm) inputs = {A: [[[1.0]], [[2.0]], [[3.0]]]} for i in range(1, len(ocm.input_states)): ocm.input_states[i].function.reinitialize() comp.run(inputs=inputs, retain_old_simulation_data=True) log = objective_mech.log.nparray_dictionary() # "outer" composition assert np.allclose(log["comp"][pnl.OUTCOME], [[0.75], [1.5], [2.25]]) # preprocess to ignore control allocations log_parsed = {} for key, value in log.items(): cleaned_key = re.sub(r'comp-sim-(\d).*', r'\1', key) log_parsed[cleaned_key] = value # First round of simulations is only one trial. # (Even though the feature fn is a Buffer, there is no history yet) for i in range(0, 3): assert len(log_parsed[str(i)]["Trial"]) == 1 # Second and third rounds of simulations are two trials. # (The buffer has history = 2) for i in range(3, 9): assert len(log_parsed[str(i)]["Trial"]) == 2
signal = pnl.ControlSignal(modulates=[(pnl.GAIN, activation)], function=pnl.Linear, variable=1.0, intensity_cost_function=pnl.Linear(slope=0.), allocation_samples=search_range) objective_mech = pnl.ObjectiveMechanism(monitor=[ inputLayer, stimulusInfo, (pnl.PROBABILITY_UPPER_THRESHOLD, decisionMaker), (pnl.PROBABILITY_LOWER_THRESHOLD, decisionMaker) ], function=computeAccuracy) meta_controller = pnl.OptimizationControlMechanism( agent_rep=stabilityFlexibility, features=[inputLayer.input_port, stimulusInfo.input_port], feature_function=pnl.Buffer(history=3), objective_mechanism=objective_mech, function=pnl.GridSearch(), control_signals=[signal]) inputs = {inputLayer: INPUT, stimulusInfo: stimulusInput} stabilityFlexibility.add_controller(meta_controller) stabilityFlexibility.enable_model_based_optimizer = True print("Beginning of Run") for i in range(1, len(stabilityFlexibility.controller.input_ports)): stabilityFlexibility.controller.input_ports[i].function.reinitialize() # stabilityFlexibility.show_graph(show_controller=True)
signal = pnl.ControlSignal(modulates=[(pnl.GAIN, activation)], function=pnl.Linear, variable=1.0, allocation_samples=search_range) objective_mech = pnl.ObjectiveMechanism(monitor=[ inputLayer, stimulusInfo, (pnl.PROBABILITY_UPPER_THRESHOLD, decisionMaker), (pnl.PROBABILITY_LOWER_THRESHOLD, decisionMaker) ], function=computeAccuracy) meta_controller = pnl.OptimizationControlMechanism( agent_rep=stabilityFlexibility, state_features=[inputLayer.input_port, stimulusInfo.input_port], state_feature_function=pnl.Buffer(history=100), objective_mechanism=objective_mech, function=pnl.GridSearch(), control_signals=[signal]) inputs = {inputLayer: INPUT, stimulusInfo: stimulusInput} stabilityFlexibility.add_model_based_optimizer(meta_controller) stabilityFlexibility.enable_model_based_optimizer = True # stabilityFlexibility.show_graph(show_node_structure=[pnl.FUNCTIONS, # pnl.PORT_FUNCTION_PARAMS, # pnl.MECH_FUNCTION_PARAMS], # show_controller=True) stabilityFlexibility.show_graph(show_node_structure=pnl.ALL, show_controller=True, show_cim=True)
def test_stability_flexibility_susan_and_sebastian(self): # computeAccuracy(trialInformation) # Inputs: trialInformation[0, 1, 2, 3] # trialInformation[0] - Task Dimension : [0, 1] or [1, 0] # trialInformation[1] - Stimulus Dimension: Congruent {[1, 1] or [-1, -1]} // Incongruent {[-1, 1] or [1, -1]} # trialInformation[2] - Upper Threshold: Probability of DDM choosing upper bound # trialInformation[3] - Lower Threshold: Probability of DDM choosing lower bound def computeAccuracy(trialInformation): # Unload contents of trialInformation # Origin Node Inputs taskInputs = trialInformation[0] stimulusInputs = trialInformation[1] # DDM Outputs upperThreshold = trialInformation[2] lowerThreshold = trialInformation[3] # Keep Track of Accuracy accuracy = [] # Beginning of Accuracy Calculation colorTrial = (taskInputs[0] == 1) motionTrial = (taskInputs[1] == 1) # Based on the task dimension information, decide which response is "correct" # Obtain accuracy probability from DDM thresholds in "correct" direction if colorTrial: if stimulusInputs[0] == 1: accuracy.append(upperThreshold) elif stimulusInputs[0] == -1: accuracy.append(lowerThreshold) if motionTrial: if stimulusInputs[1] == 1: accuracy.append(upperThreshold) elif stimulusInputs[1] == -1: accuracy.append(lowerThreshold) # Accounts for initialization runs that have no variable input if len(accuracy) == 0: accuracy = [0] # print("Accuracy: ", accuracy[0]) # print() return [accuracy] # BEGIN: Composition Construction # Constants as defined in Musslick et al. 2018 tau = 0.9 # Time Constant DRIFT = 1 # Drift Rate STARTING_POINT = 0.0 # Starting Point THRESHOLD = 0.0475 # Threshold NOISE = 0.04 # Noise T0 = 0.2 # T0 # Task Layer: [Color, Motion] {0, 1} Mutually Exclusive # Origin Node taskLayer = pnl.TransferMechanism(default_variable=[[0.0, 0.0]], size=2, function=pnl.Linear(slope=1, intercept=0), output_states=[pnl.RESULT], name='Task Input [I1, I2]') # Stimulus Layer: [Color Stimulus, Motion Stimulus] # Origin Node stimulusInfo = pnl.TransferMechanism(default_variable=[[0.0, 0.0]], size=2, function=pnl.Linear(slope=1, intercept=0), output_states=[pnl.RESULT], name="Stimulus Input [S1, S2]") # Activation Layer: [Color Activation, Motion Activation] # Recurrent: Self Excitation, Mutual Inhibition # Controlled: Gain Parameter activation = pnl.RecurrentTransferMechanism( default_variable=[[0.0, 0.0]], function=pnl.Logistic(gain=1.0), matrix=[[1.0, -1.0], [-1.0, 1.0]], integrator_mode=True, integrator_function=pnl.AdaptiveIntegrator(rate=(tau)), initial_value=np.array([[0.0, 0.0]]), output_states=[pnl.RESULT], name='Task Activations [Act 1, Act 2]') # Hadamard product of Activation and Stimulus Information nonAutomaticComponent = pnl.TransferMechanism( default_variable=[[0.0, 0.0]], size=2, function=pnl.Linear(slope=1, intercept=0), input_states=pnl.InputState(combine=pnl.PRODUCT), output_states=[pnl.RESULT], name='Non-Automatic Component [S1*Activity1, S2*Activity2]') # Summation of nonAutomatic and Automatic Components ddmCombination = pnl.TransferMechanism( size=1, function=pnl.Linear(slope=1, intercept=0), input_states=pnl.InputState(combine=pnl.SUM), output_states=[pnl.RESULT], name="Drift = (S1 + S2) + (S1*Activity1 + S2*Activity2)") decisionMaker = pnl.DDM(function=pnl.DriftDiffusionAnalytical( drift_rate=DRIFT, starting_point=STARTING_POINT, threshold=THRESHOLD, noise=NOISE, t0=T0), output_states=[ pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME, pnl.PROBABILITY_UPPER_THRESHOLD, pnl.PROBABILITY_LOWER_THRESHOLD ], name='DDM') taskLayer.set_log_conditions([pnl.RESULT]) stimulusInfo.set_log_conditions([pnl.RESULT]) activation.set_log_conditions([pnl.RESULT, "mod_gain"]) nonAutomaticComponent.set_log_conditions([pnl.RESULT]) ddmCombination.set_log_conditions([pnl.RESULT]) decisionMaker.set_log_conditions([ pnl.PROBABILITY_UPPER_THRESHOLD, pnl.PROBABILITY_LOWER_THRESHOLD, pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME ]) # Composition Creation stabilityFlexibility = pnl.Composition(controller_mode=pnl.BEFORE) # Node Creation stabilityFlexibility.add_node(taskLayer) stabilityFlexibility.add_node(activation) stabilityFlexibility.add_node(nonAutomaticComponent) stabilityFlexibility.add_node(stimulusInfo) stabilityFlexibility.add_node(ddmCombination) stabilityFlexibility.add_node(decisionMaker) # Projection Creation stabilityFlexibility.add_projection(sender=taskLayer, receiver=activation) stabilityFlexibility.add_projection(sender=activation, receiver=nonAutomaticComponent) stabilityFlexibility.add_projection(sender=stimulusInfo, receiver=nonAutomaticComponent) stabilityFlexibility.add_projection(sender=stimulusInfo, receiver=ddmCombination) stabilityFlexibility.add_projection(sender=nonAutomaticComponent, receiver=ddmCombination) stabilityFlexibility.add_projection(sender=ddmCombination, receiver=decisionMaker) # Beginning of Controller # Grid Search Range searchRange = pnl.SampleSpec(start=1.0, stop=1.9, num=10) # Modulate the GAIN parameter from activation layer # Initalize cost function as 0 signal = pnl.ControlSignal( projections=[(pnl.GAIN, activation)], function=pnl.Linear, variable=1.0, intensity_cost_function=pnl.Linear(slope=0.0), allocation_samples=searchRange) # Use the computeAccuracy function to obtain selection values # Pass in 4 arguments whenever computeRewardRate is called objectiveMechanism = pnl.ObjectiveMechanism( monitor=[ taskLayer, stimulusInfo, (pnl.PROBABILITY_UPPER_THRESHOLD, decisionMaker), (pnl.PROBABILITY_LOWER_THRESHOLD, decisionMaker) ], function=computeAccuracy, name="Controller Objective Mechanism") # Sets trial history for simulations over specified signal search parameters metaController = pnl.OptimizationControlMechanism( agent_rep=stabilityFlexibility, features=[taskLayer.input_state, stimulusInfo.input_state], feature_function=pnl.Buffer(history=10), name="Controller", objective_mechanism=objectiveMechanism, function=pnl.GridSearch(), control_signals=[signal]) stabilityFlexibility.add_controller(metaController) stabilityFlexibility.enable_controller = True # stabilityFlexibility.model_based_optimizer_mode = pnl.BEFORE for i in range(1, len(stabilityFlexibility.controller.input_states)): stabilityFlexibility.controller.input_states[ i].function.reinitialize() # Origin Node Inputs taskTrain = [[1, 0], [0, 1], [1, 0], [0, 1]] stimulusTrain = [[1, -1], [-1, 1], [1, -1], [-1, 1]] inputs = {taskLayer: taskTrain, stimulusInfo: stimulusTrain} stabilityFlexibility.run(inputs)