Exemple #1
0
    def test_gating_signal_and_gating_projection_names(self):
        T3 = pnl.TransferMechanism(name='T3')
        T4 = pnl.TransferMechanism(name='T4', input_states=['First State','Second State'])

        # GatingSignal with one GatingProjection
        G1 = pnl.GatingMechanism(gating_signals=[T3])
        assert G1.gating_signals[0].name == 'T3[InputState-0] GatingSignal'
        assert G1.gating_signals[0].efferents[0].name == 'GatingProjection for T3[InputState-0]'

        # GatingSignal with two GatingProjections to two States of same Mechanism
        G2 = pnl.GatingMechanism(gating_signals=[{pnl.PROJECTIONS:[T4.input_states[0], T4.input_states[1]]}])
        assert G2.gating_signals[0].name == 'T4[First State, Second State] GatingSignal'
        assert G2.gating_signals[0].efferents[0].name == 'GatingProjection for T4[First State]'
        assert G2.gating_signals[0].efferents[1].name == 'GatingProjection for T4[Second State]'

        # GatingSignal with two GatingProjections to two States of different Mechanisms
        G3 = pnl.GatingMechanism(gating_signals=[{pnl.PROJECTIONS:[T3, T4]}])
        assert G3.gating_signals[0].name == 'GatingSignal-0 divergent GatingSignal'
        assert G3.gating_signals[0].efferents[0].name == 'GatingProjection for T3[InputState-0]'
        assert G3.gating_signals[0].efferents[1].name == 'GatingProjection for T4[First State]'

        # GatingProjections to ProcessingMechanism from GatingSignals of existing GatingMechanism
        T5 = pnl.TransferMechanism(name='T5',
                                   input_states=[T3.output_states[pnl.RESULTS],
                                                 G3.gating_signals['GatingSignal-0 divergent GatingSignal']],
                                   output_states=[G3.gating_signals['GatingSignal-0 divergent GatingSignal']])
    def test_formats_for_gating_specification_of_input_and_output_states(self):

        gating_spec_list = [
            pnl.GATING, pnl.GATING_SIGNAL, pnl.GATING_PROJECTION,
            pnl.GatingSignal,
            pnl.GatingSignal(), pnl.GatingProjection, "GP_OBJECT",
            pnl.GatingMechanism,
            pnl.GatingMechanism(), (0.3, pnl.GATING), (0.3, pnl.GATING_SIGNAL),
            (0.3, pnl.GATING_PROJECTION), (0.3, pnl.GatingSignal),
            (0.3, pnl.GatingSignal()), (0.3, pnl.GatingProjection),
            (0.3, "GP_OBJECT"), (0.3, pnl.GatingMechanism),
            (0.3, pnl.GatingMechanism())
        ]
        for i, gating_tuple in enumerate(
            [j for j in zip(gating_spec_list, reversed(gating_spec_list))]):
            G1, G2 = gating_tuple

            # This shenanigans is to avoid assigning the same instantiated ControlProjection more than once
            if G1 is 'GP_OBJECT':
                G1 = pnl.GatingProjection()
            elif isinstance(G1, tuple) and G1[1] is 'GP_OBJECT':
                G1 = (G1[0], pnl.GatingProjection())
            if G2 is 'GP_OBJECT':
                G2 = pnl.GatingProjection()
            elif isinstance(G2, tuple) and G2[1] is 'GP_OBJECT':
                G2 = (G2[0], pnl.GatingProjection())

            T = pnl.TransferMechanism(name='T-GATING-{}'.format(i),
                                      input_states=[G1],
                                      output_states=[G2])
            assert T.input_states[0].mod_afferents[0].name in \
                   'GatingProjection for T-GATING-{}[InputState-0]'.format(i)

            assert T.output_states[0].mod_afferents[0].name in \
                   'GatingProjection for T-GATING-{}[OutputState-0]'.format(i)
Exemple #3
0
    def test_2_item_tuple_from_gating_signal_to_output_states(self):

        D4 = pnl.DDM(name='D4')

        # Single name
        G = pnl.GatingMechanism(gating_signals=[(pnl.DECISION_VARIABLE, D4)])
        assert G.gating_signals[0].name == 'D4[DECISION_VARIABLE] GatingSignal'
        assert G.gating_signals[0].efferents[0].receiver.name == 'DECISION_VARIABLE'

        # List of names
        G = pnl.GatingMechanism(gating_signals=[([pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME], D4)])
        assert G.gating_signals[0].name == 'D4[DECISION_VARIABLE, RESPONSE_TIME] GatingSignal'
        assert G.gating_signals[0].efferents[0].receiver.name == 'DECISION_VARIABLE'
        assert G.gating_signals[0].efferents[1].receiver.name == 'RESPONSE_TIME'
    def test_multiple_modulatory_projections_with_state_name(self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            'DECISION_CONTROL': [
                M.parameter_states[pnl.DRIFT_RATE], M.parameter_states[
                    pnl.THRESHOLD]
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            'DDM_OUTPUT_GATE': [
                M.output_states[pnl.DECISION_VARIABLE], M.output_states[
                    pnl.RESPONSE_TIME]
            ]
        }])
        assert len(C.control_signals) == 1
        assert C.control_signals[0].name == 'DECISION_CONTROL'
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_states[pnl.DRIFT_RATE].mod_afferents[
            0] == C.control_signals[0].efferents[0]
        assert M.parameter_states[pnl.THRESHOLD].mod_afferents[
            0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert G.gating_signals[0].name == 'DDM_OUTPUT_GATE'
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_states[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_states[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]
    def test_multiple_modulatory_projections_with_port_Name(self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            'DECISION_CONTROL': [
                M.parameter_ports[psyneulink.core.components.functions.
                                  distributionfunctions.DRIFT_RATE],
                M.parameter_ports[psyneulink.core.globals.keywords.THRESHOLD]
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            'DDM_OUTPUT_GATE': [
                M.output_ports[pnl.DECISION_VARIABLE], M.output_ports[
                    pnl.RESPONSE_TIME]
            ]
        }])
        assert len(C.control_signals) == 1
        assert C.control_signals[0].name == 'DECISION_CONTROL'
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_ports[
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE].mod_afferents[0] == C.control_signals[0].efferents[0]
        assert M.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert G.gating_signals[0].name == 'DDM_OUTPUT_GATE'
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_ports[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_ports[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]
    def test_multiple_modulatory_projections_with_mech_and_port_Name_specs(
            self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            pnl.MECHANISM:
            M,
            pnl.PARAMETER_PORTS: [
                psyneulink.core.components.functions.distributionfunctions.
                DRIFT_RATE, psyneulink.core.globals.keywords.THRESHOLD
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            pnl.MECHANISM:
            M,
            pnl.OUTPUT_PORTS: [pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME]
        }])
        assert len(C.control_signals) == 1
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_ports[
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE].mod_afferents[0] == C.control_signals[0].efferents[0]
        assert M.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_ports[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_ports[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]
    def test_multiple_modulatory_projection_specs(self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            pnl.PROJECTIONS: [
                M.parameter_ports[
                    psyneulink.core.components.functions.nonstateful.
                    distributionfunctions.DRIFT_RATE], M.parameter_ports[
                        psyneulink.core.globals.keywords.THRESHOLD]
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            pnl.PROJECTIONS: [
                M.output_ports[pnl.DECISION_VARIABLE], M.output_ports[
                    pnl.RESPONSE_TIME]
            ]
        }])
        assert len(C.control_signals) == 1
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_ports[
            psyneulink.core.components.functions.nonstateful.
            distributionfunctions.
            DRIFT_RATE].mod_afferents[0] == C.control_signals[0].efferents[0]
        assert M.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_ports[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_ports[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]
    def test_multiple_modulatory_projection_specs(self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            pnl.PROJECTIONS: [
                M.parameter_states[pnl.DRIFT_RATE], M.parameter_states[
                    pnl.THRESHOLD]
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            pnl.PROJECTIONS: [
                M.output_states[pnl.DECISION_VARIABLE], M.output_states[
                    pnl.RESPONSE_TIME]
            ]
        }])
        assert len(C.control_signals) == 1
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_states[pnl.DRIFT_RATE].mod_afferents[
            0] == C.control_signals[0].efferents[0]
        assert M.parameter_states[pnl.THRESHOLD].mod_afferents[
            0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_states[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_states[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]
    def test_multiple_modulatory_projections_with_mech_and_state_name_specs(
            self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            pnl.MECHANISM:
            M,
            pnl.PARAMETER_STATES: [pnl.DRIFT_RATE, pnl.THRESHOLD]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            pnl.MECHANISM:
            M,
            pnl.OUTPUT_STATES: [pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME]
        }])
        assert len(C.control_signals) == 1
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_states[pnl.DRIFT_RATE].mod_afferents[
            0] == C.control_signals[0].efferents[0]
        assert M.parameter_states[pnl.THRESHOLD].mod_afferents[
            0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_states[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_states[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]
    def test_formats_for_gating_specification_of_input_and_output_states(self):

        gating_spec_list = [
            pnl.GATING, pnl.GATING_SIGNAL, pnl.GATING_PROJECTION,
            pnl.GatingSignal, pnl.GatingSignal,
            pnl.GatingSignal(), pnl.GatingProjection, "GP_OBJECT",
            pnl.GatingMechanism, pnl.ModulatoryMechanism,
            pnl.GatingMechanism(), (0.3, pnl.GATING), (0.3, pnl.GATING_SIGNAL),
            (0.3, pnl.GATING_PROJECTION), (0.3, pnl.GatingSignal),
            (0.3, pnl.GatingSignal()), (0.3, pnl.GatingProjection),
            (0.3, "GP_OBJECT"), (0.3, pnl.GatingMechanism),
            (0.3, pnl.ModulatoryMechanism), (0.3, pnl.GatingMechanism())
        ]
        for i, gating_tuple in enumerate(
            [j for j in zip(gating_spec_list, reversed(gating_spec_list))]):
            G1, G2 = gating_tuple

            # This shenanigans is to avoid assigning the same instantiated ControlProjection more than once
            if G1 is 'GP_OBJECT':
                G1 = pnl.GatingProjection()
            elif isinstance(G1, tuple) and G1[1] is 'GP_OBJECT':
                G1 = (G1[0], pnl.GatingProjection())
            if G2 is 'GP_OBJECT':
                G2 = pnl.GatingProjection()
            elif isinstance(G2, tuple) and G2[1] is 'GP_OBJECT':
                G2 = (G2[0], pnl.GatingProjection())

            T = pnl.TransferMechanism(name='T-GATING-{}'.format(i),
                                      input_states=[G1],
                                      output_states=[G2])
            assert T.input_states[0].mod_afferents[0].name in \
                   'GatingProjection for T-GATING-{}[InputState-0]'.format(i)

            assert T.output_states[0].mod_afferents[0].name in \
                   'GatingProjection for T-GATING-{}[OutputState-0]'.format(i)

        with pytest.raises(pnl.ProjectionError) as error_text:
            T1 = pnl.ProcessingMechanism(
                name='T1', input_states=[pnl.ModulatoryMechanism()])
        assert 'Primary OutputState of ModulatoryMechanism-0 (ControlSignal-0) ' \
               'cannot be used as a sender of a Projection to InputState of T1' in error_text.value.args[0]

        with pytest.raises(pnl.ProjectionError) as error_text:
            T2 = pnl.ProcessingMechanism(
                name='T2', output_states=[pnl.ModulatoryMechanism()])
        assert 'Primary OutputState of ModulatoryMechanism-1 (ControlSignal-0) ' \
               'cannot be used as a sender of a Projection to OutputState of T2' in error_text.value.args[0]
    def test_2_item_tuple_from_input_and_output_ports_to_gating_signals(self):

        G = pnl.GatingMechanism(gating_signals=['a', 'b'])
        T = pnl.TransferMechanism(name='T',
                                  input_ports=[(3, G)],
                                  output_ports=[(2, G.gating_signals['b'])])
        assert T.input_ports[0].mod_afferents[0].sender == G.gating_signals[0]
        assert T.output_ports[0].mod_afferents[0].sender == G.gating_signals[1]
Exemple #12
0
def test_gating(benchmark, comp_mode):

    Input_Layer = pnl.TransferMechanism(
        name='Input_Layer',
        default_variable=np.zeros((2,)),
        function=pnl.Logistic()
    )

    Output_Layer = pnl.TransferMechanism(
        name='Output_Layer',
        default_variable=[0, 0, 0],
        function=pnl.Linear(),
        output_ports={
            pnl.NAME: 'RESULTS USING UDF',
            pnl.FUNCTION: pnl.Linear(slope=pnl.GATING)
        }
    )

    Gating_Mechanism = pnl.GatingMechanism(
        size=[1],
        gating_signals=[Output_Layer.output_port]
    )

    p_pathway = [Input_Layer, Output_Layer]

    stim_list = {
        Input_Layer: [[-1, 30], [-1, 30], [-1, 30], [-1, 30]],
        Gating_Mechanism: [[0.0], [0.5], [1.0], [2.0]]
    }

    comp = pnl.Composition(name="comp")
    comp.add_linear_processing_pathway(p_pathway)
    comp.add_node(Gating_Mechanism)

    comp.run(num_trials=4, inputs=stim_list, execution_mode=comp_mode)

    expected_results = [
        [np.array([0., 0., 0.])],
        [np.array([0.63447071, 0.63447071, 0.63447071])],
        [np.array([1.26894142, 1.26894142, 1.26894142])],
        [np.array([2.53788284, 2.53788284, 2.53788284])]
    ]

    np.testing.assert_allclose(comp.results, expected_results)
    if benchmark.enabled:
        benchmark(comp.run, num_trials=4, inputs=stim_list, execution_mode=comp_mode)
class TestProjectionSpecificationFormats:
    def test_projection_specification_formats(self):
        """Test various matrix and Projection specifications
        Also tests assignment of Projections to pathay of Composition using add_linear_processing_pathway:
        - Projection explicitly specified in sequence (M1_M2_proj)
        - Projection pre-constructed and assigned to Mechanisms, but not specified in pathway(M2_M3_proj)
        - Projection specified in pathway that is duplicate one preconstructed and assigned to Mechanisms (M3_M4_proj)
          (currently it should be ignored; in the future, if/when Projections between the same sender and receiver
           in different Compositions are allowed, then it should be used)
        """
        M1 = pnl.ProcessingMechanism(size=2)
        M2 = pnl.ProcessingMechanism(size=5)
        M3 = pnl.ProcessingMechanism(size=4)
        M4 = pnl.ProcessingMechanism(size=3)

        M1_M2_matrix = (np.arange(2 * 5).reshape((2, 5)) + 1) / (2 * 5)
        M2_M3_matrix = (np.arange(5 * 4).reshape((5, 4)) + 1) / (5 * 4)
        M3_M4_matrix_A = (np.arange(4 * 3).reshape((4, 3)) + 1) / (4 * 5)
        M3_M4_matrix_B = (np.arange(4 * 3).reshape((4, 3)) + 1) / (4 * 3)

        M1_M2_proj = pnl.MappingProjection(matrix=M1_M2_matrix)
        M2_M3_proj = pnl.MappingProjection(sender=M2,
                                           receiver=M3,
                                           matrix={
                                               pnl.VALUE: M2_M3_matrix,
                                               pnl.FUNCTION:
                                               pnl.AccumulatorIntegrator,
                                               pnl.FUNCTION_PARAMS: {
                                                   pnl.DEFAULT_VARIABLE:
                                                   M2_M3_matrix,
                                                   pnl.INITIALIZER:
                                                   M2_M3_matrix
                                               }
                                           })
        M3_M4_proj_A = pnl.MappingProjection(sender=M3,
                                             receiver=M4,
                                             matrix=M3_M4_matrix_A)
        c = pnl.Composition()
        c.add_linear_processing_pathway(
            pathway=[M1, M1_M2_proj, M2, M3, M3_M4_matrix_B, M4])

        assert np.allclose(M2_M3_proj.matrix.base, M2_M3_matrix)
        assert M2.efferents[0] is M2_M3_proj
        assert np.allclose(M3.efferents[0].matrix.base, M3_M4_matrix_A)
        # This is if different Projections are allowed between the same sender and receiver in different Compositions:
        # assert np.allclose(M3.efferents[1].matrix, M3_M4_matrix_B)
        c.run(inputs={M1: [2, -30]})
        # assert np.allclose(c.results, [[-130.19166667, -152.53333333, -174.875]])
        assert np.allclose(c.results, [[-78.115, -91.52, -104.925]])

    def test_multiple_modulatory_projection_specs(self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            pnl.PROJECTIONS: [
                M.parameter_ports[psyneulink.core.components.functions.
                                  distributionfunctions.DRIFT_RATE],
                M.parameter_ports[psyneulink.core.globals.keywords.THRESHOLD]
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            pnl.PROJECTIONS: [
                M.output_ports[pnl.DECISION_VARIABLE], M.output_ports[
                    pnl.RESPONSE_TIME]
            ]
        }])
        assert len(C.control_signals) == 1
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_ports[
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE].mod_afferents[0] == C.control_signals[0].efferents[0]
        assert M.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_ports[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_ports[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]

    def test_multiple_modulatory_projections_with_port_Name(self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            'DECISION_CONTROL': [
                M.parameter_ports[psyneulink.core.components.functions.
                                  distributionfunctions.DRIFT_RATE],
                M.parameter_ports[psyneulink.core.globals.keywords.THRESHOLD]
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            'DDM_OUTPUT_GATE': [
                M.output_ports[pnl.DECISION_VARIABLE], M.output_ports[
                    pnl.RESPONSE_TIME]
            ]
        }])
        assert len(C.control_signals) == 1
        assert C.control_signals[0].name == 'DECISION_CONTROL'
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_ports[
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE].mod_afferents[0] == C.control_signals[0].efferents[0]
        assert M.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert G.gating_signals[0].name == 'DDM_OUTPUT_GATE'
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_ports[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_ports[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]

    def test_multiple_modulatory_projections_with_mech_and_port_Name_specs(
            self):

        M = pnl.DDM(name='MY DDM')
        C = pnl.ControlMechanism(control_signals=[{
            pnl.MECHANISM:
            M,
            pnl.PARAMETER_PORTS: [
                psyneulink.core.components.functions.distributionfunctions.
                DRIFT_RATE, psyneulink.core.globals.keywords.THRESHOLD
            ]
        }])
        G = pnl.GatingMechanism(gating_signals=[{
            pnl.MECHANISM:
            M,
            pnl.OUTPUT_PORTS: [pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME]
        }])
        assert len(C.control_signals) == 1
        assert len(C.control_signals[0].efferents) == 2
        assert M.parameter_ports[
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE].mod_afferents[0] == C.control_signals[0].efferents[0]
        assert M.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0] == C.control_signals[0].efferents[1]
        assert len(G.gating_signals) == 1
        assert len(G.gating_signals[0].efferents) == 2
        assert M.output_ports[pnl.DECISION_VARIABLE].mod_afferents[
            0] == G.gating_signals[0].efferents[0]
        assert M.output_ports[pnl.RESPONSE_TIME].mod_afferents[
            0] == G.gating_signals[0].efferents[1]

    def test_mapping_projection_with_mech_and_port_Name_specs(self):
        R1 = pnl.TransferMechanism(output_ports=['OUTPUT_1', 'OUTPUT_2'])
        R2 = pnl.TransferMechanism(default_variable=[[0], [0]],
                                   input_ports=['INPUT_1', 'INPUT_2'])
        T = pnl.TransferMechanism(input_ports=[{
            pnl.MECHANISM:
            R1,
            pnl.OUTPUT_PORTS: ['OUTPUT_1', 'OUTPUT_2']
        }],
                                  output_ports=[{
                                      pnl.MECHANISM:
                                      R2,
                                      pnl.INPUT_PORTS: ['INPUT_1', 'INPUT_2']
                                  }])
        assert len(R1.output_ports) == 2
        assert len(R2.input_ports) == 2
        assert len(T.input_ports) == 1
        for input_port in T.input_ports:
            for projection in input_port.path_afferents:
                assert projection.sender.owner is R1
        assert len(T.output_ports) == 1
        for output_port in T.output_ports:
            for projection in output_port.efferents:
                assert projection.receiver.owner is R2

    def test_mapping_projection_using_2_item_tuple_with_list_of_port_Names(
            self):

        T1 = pnl.TransferMechanism(name='T1', input_ports=[[0, 0], [0, 0, 0]])
        T2 = pnl.TransferMechanism(name='T2',
                                   output_ports=[
                                       (['InputPort-0', 'InputPort-1'], T1)
                                   ])
        assert len(T2.output_ports) == 1
        assert T2.output_ports[0].efferents[0].receiver.name == 'InputPort-0'
        assert T2.output_ports[0].efferents[0].matrix.base.shape == (1, 2)
        assert T2.output_ports[0].efferents[1].receiver.name == 'InputPort-1'
        assert T2.output_ports[0].efferents[1].matrix.base.shape == (1, 3)

    def test_mapping_projection_using_2_item_tuple_and_3_item_tuples_with_index_specs(
            self):

        T1 = pnl.TransferMechanism(name='T1', input_ports=[[0, 0], [0, 0, 0]])
        T2 = pnl.TransferMechanism(name='T2',
                                   input_ports=['a', 'b', 'c'],
                                   output_ports=[
                                       (['InputPort-0', 'InputPort-1'], T1),
                                       ('InputPort-0', (pnl.OWNER_VALUE, 2),
                                        T1),
                                       (['InputPort-0', 'InputPort-1'], 1, T1)
                                   ])
        assert len(T2.output_ports) == 3
        assert T2.output_ports[0].efferents[0].receiver.name == 'InputPort-0'
        assert T2.output_ports[0].efferents[0].matrix.base.shape == (1, 2)
        assert T2.output_ports[0].efferents[1].receiver.name == 'InputPort-1'
        assert T2.output_ports[0].efferents[1].matrix.base.shape == (1, 3)
        assert T2.output_ports[1].owner_value_index == 2
        assert T2.output_ports[2].owner_value_index == 1

    def test_2_item_tuple_from_control_signal_to_parameter_port(self):

        D = pnl.DDM(name='D')

        # Single name
        C = pnl.ControlMechanism(
            control_signals=[(psyneulink.core.components.functions.
                              distributionfunctions.DRIFT_RATE, D)])
        assert C.control_signals[0].name == 'D[drift_rate] ControlSignal'
        assert C.control_signals[0].efferents[0].receiver.name == 'drift_rate'

        # List of names
        C = pnl.ControlMechanism(control_signals=[([
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE, psyneulink.core.globals.keywords.THRESHOLD
        ], D)])
        assert C.control_signals[
            0].name == 'D[drift_rate, threshold] ControlSignal'
        assert C.control_signals[0].efferents[0].receiver.name == 'drift_rate'
        assert C.control_signals[0].efferents[1].receiver.name == 'threshold'

    def test_2_item_tuple_from_parameter_port_to_control_signals(self):

        C = pnl.ControlMechanism(control_signals=['a', 'b'])
        D = pnl.DDM(name='D3',
                    function=psyneulink.core.components.functions.
                    distributionfunctions.DriftDiffusionAnalytical(
                        drift_rate=(3, C),
                        threshold=(2, C.control_signals['b'])))
        assert D.parameter_ports[
            psyneulink.core.components.functions.distributionfunctions.
            DRIFT_RATE].mod_afferents[0].sender == C.control_signals[0]
        assert D.parameter_ports[
            psyneulink.core.globals.keywords.
            THRESHOLD].mod_afferents[0].sender == C.control_signals[1]

    def test_2_item_tuple_from_gating_signal_to_output_ports(self):

        D4 = pnl.DDM(name='D4')

        # Single name
        G = pnl.GatingMechanism(gating_signals=[(pnl.DECISION_VARIABLE, D4)])
        assert G.gating_signals[0].name == 'D4[DECISION_VARIABLE] GatingSignal'
        assert G.gating_signals[0].efferents[
            0].receiver.name == 'DECISION_VARIABLE'

        # List of names
        G = pnl.GatingMechanism(
            gating_signals=[([pnl.DECISION_VARIABLE, pnl.RESPONSE_TIME], D4)])
        assert G.gating_signals[
            0].name == 'D4[DECISION_VARIABLE, RESPONSE_TIME] GatingSignal'
        assert G.gating_signals[0].efferents[
            0].receiver.name == 'DECISION_VARIABLE'
        assert G.gating_signals[0].efferents[
            1].receiver.name == 'RESPONSE_TIME'

    def test_2_item_tuple_from_input_and_output_ports_to_gating_signals(self):

        G = pnl.GatingMechanism(gating_signals=['a', 'b'])
        T = pnl.TransferMechanism(name='T',
                                  input_ports=[(3, G)],
                                  output_ports=[(2, G.gating_signals['b'])])
        assert T.input_ports[0].mod_afferents[0].sender == G.gating_signals[0]
        assert T.output_ports[0].mod_afferents[0].sender == G.gating_signals[1]

    control_spec_list = [
        pnl.CONTROL, pnl.CONTROL_SIGNAL, pnl.CONTROL_PROJECTION,
        pnl.ControlSignal,
        pnl.ControlSignal(), pnl.ControlProjection, "CP_OBJECT",
        pnl.ControlMechanism,
        pnl.ControlMechanism(), pnl.ControlMechanism, (0.3, pnl.CONTROL),
        (0.3, pnl.CONTROL_SIGNAL), (0.3, pnl.CONTROL_PROJECTION),
        (0.3, pnl.ControlSignal), (0.3, pnl.ControlSignal()),
        (0.3, pnl.ControlProjection), (0.3, "CP_OBJECT"),
        (0.3, pnl.ControlMechanism), (0.3, pnl.ControlMechanism()),
        (0.3, pnl.ControlMechanism)
    ]

    @pytest.mark.parametrize(
        'noise, gain',
        [(noise, gain) for noise, gain in
         [j for j in zip(control_spec_list, reversed(control_spec_list))]])
    def test_formats_for_control_specification_for_mechanism_and_function_params(
            self, noise, gain):
        # This shenanigans is to avoid assigning the same instantiated ControlProjection more than once
        if noise == 'CP_OBJECT':
            noise = pnl.ControlProjection()
        elif isinstance(noise, tuple) and noise[1] == 'CP_OBJECT':
            noise = (noise[0], pnl.ControlProjection())
        if gain == 'CP_OBJECT':
            gain = pnl.ControlProjection()
        elif isinstance(gain, tuple) and gain[1] == 'CP_OBJECT':
            gain = (gain[0], pnl.ControlProjection())

        R = pnl.RecurrentTransferMechanism(
            # NOTE: fixed name prevents failures due to registry naming
            # for parallel test runs
            name='R-CONTROL',
            noise=noise,
            function=psyneulink.core.components.functions.transferfunctions.
            Logistic(gain=gain))
        assert R.parameter_ports[pnl.NOISE].mod_afferents[0].name in \
                'ControlProjection for R-CONTROL[noise]'
        assert R.parameter_ports[pnl.GAIN].mod_afferents[0].name in \
                'ControlProjection for R-CONTROL[gain]'

    gating_spec_list = [
        pnl.GATING, pnl.CONTROL, pnl.GATING_SIGNAL, pnl.CONTROL_SIGNAL,
        pnl.GATING_PROJECTION, pnl.CONTROL_PROJECTION, pnl.GatingSignal,
        pnl.ControlSignal,
        pnl.GatingSignal(),
        pnl.ControlSignal(), pnl.GatingProjection, "GP_OBJECT",
        pnl.GatingMechanism, pnl.ControlMechanism,
        pnl.GatingMechanism(),
        pnl.ControlMechanism(), (0.3, pnl.GATING), (0.3, pnl.CONTROL),
        (0.3, pnl.GATING_SIGNAL), (0.3, pnl.CONTROL_SIGNAL),
        (0.3, pnl.GATING_PROJECTION), (0.3, pnl.CONTROL_PROJECTION),
        (0.3, pnl.GatingSignal), (0.3, pnl.ControlSignal),
        (0.3, pnl.GatingSignal()), (0.3, pnl.ControlSignal()),
        (0.3, pnl.GatingProjection), (0.3, pnl.ControlProjection),
        (0.3, "GP_OBJECT"), (0.3, pnl.GatingMechanism),
        (0.3, pnl.ControlMechanism), (0.3, pnl.GatingMechanism()),
        (0.3, pnl.ControlMechanism())
    ]

    @pytest.mark.parametrize(
        'input_port, output_port',
        [(inp, outp) for inp, outp in
         [j for j in zip(gating_spec_list, reversed(gating_spec_list))]])
    def test_formats_for_gating_specification_of_input_and_output_ports(
            self, input_port, output_port):
        G_IN, G_OUT = input_port, output_port

        # This shenanigans is to avoid assigning the same instantiated ControlProjection more than once
        if G_IN == 'GP_OBJECT':
            G_IN = pnl.GatingProjection()
        elif isinstance(G_IN, tuple) and G_IN[1] == 'GP_OBJECT':
            G_IN = (G_IN[0], pnl.GatingProjection())
        if G_OUT == 'GP_OBJECT':
            G_OUT = pnl.GatingProjection()
        elif isinstance(G_OUT, tuple) and G_OUT[1] == 'GP_OBJECT':
            G_OUT = (G_OUT[0], pnl.GatingProjection())

        if isinstance(G_IN, tuple):
            IN_NAME = G_IN[1]
        else:
            IN_NAME = G_IN
        IN_CONTROL = pnl.CONTROL in repr(IN_NAME).split(".")[-1].upper()
        if isinstance(G_OUT, tuple):
            OUT_NAME = G_OUT[1]
        else:
            OUT_NAME = G_OUT
        OUT_CONTROL = pnl.CONTROL in repr(OUT_NAME).split(".")[-1].upper()

        T = pnl.TransferMechanism(name='T-GATING',
                                  input_ports=[G_IN],
                                  output_ports=[G_OUT])

        if IN_CONTROL:
            assert T.input_ports[0].mod_afferents[0].name in \
                    'ControlProjection for T-GATING[InputPort-0]'
        else:
            assert T.input_ports[0].mod_afferents[0].name in \
                    'GatingProjection for T-GATING[InputPort-0]'

        if OUT_CONTROL:
            assert T.output_ports[0].mod_afferents[0].name in \
                    'ControlProjection for T-GATING[OutputPort-0]'
        else:
            assert T.output_ports[0].mod_afferents[0].name in \
                    'GatingProjection for T-GATING[OutputPort-0]'

        # with pytest.raises(pnl.ProjectionError) as error_text:
        #     T1 = pnl.ProcessingMechanism(name='T1', input_ports=[pnl.ControlMechanism()])
        # assert 'Primary OutputPort of ControlMechanism-0 (ControlSignal-0) ' \
        #        'cannot be used as a sender of a Projection to InputPort of T1' in error_text.value.args[0]
        #
        # with pytest.raises(pnl.ProjectionError) as error_text:
        #     T2 = pnl.ProcessingMechanism(name='T2', output_ports=[pnl.ControlMechanism()])
        # assert 'Primary OutputPort of ControlMechanism-1 (ControlSignal-0) ' \
        #        'cannot be used as a sender of a Projection to OutputPort of T2' in error_text.value.args[0]

    def test_no_warning_when_matrix_specified(self):

        with pytest.warns(None) as w:
            c = pnl.Composition()
            m0 = pnl.ProcessingMechanism(default_variable=[0, 0, 0, 0])
            p0 = pnl.MappingProjection(matrix=[[0, 0, 0, 0], [0, 0, 0, 0],
                                               [0, 0, 0, 0], [0, 0, 0, 0]])
            m1 = pnl.TransferMechanism(default_variable=[0, 0, 0, 0])
            c.add_linear_processing_pathway([m0, p0, m1])
            for warn in w:
                if r'elementwise comparison failed; returning scalar instead' in warn.message.args[
                        0]:
                    raise

    # KDM: this is a good candidate for pytest.parametrize
    def test_masked_mapping_projection(self):

        t1 = pnl.TransferMechanism(size=2)
        t2 = pnl.TransferMechanism(size=2)
        proj = pnl.MaskedMappingProjection(sender=t1,
                                           receiver=t2,
                                           matrix=[[1, 2], [3, 4]],
                                           mask=[[1, 0], [0, 1]],
                                           mask_operation=pnl.ADD)
        c = pnl.Composition(pathways=[[t1, proj, t2]])
        val = c.execute(inputs={t1: [1, 2]})
        assert np.allclose(val, [[8, 12]])

        t1 = pnl.TransferMechanism(size=2)
        t2 = pnl.TransferMechanism(size=2)
        proj = pnl.MaskedMappingProjection(sender=t1,
                                           receiver=t2,
                                           matrix=[[1, 2], [3, 4]],
                                           mask=[[1, 0], [0, 1]],
                                           mask_operation=pnl.MULTIPLY)
        c = pnl.Composition(pathways=[[t1, proj, t2]])
        val = c.execute(inputs={t1: [1, 2]})
        assert np.allclose(val, [[1, 8]])

        t1 = pnl.TransferMechanism(size=2)
        t2 = pnl.TransferMechanism(size=2)
        proj = pnl.MaskedMappingProjection(sender=t1,
                                           receiver=t2,
                                           mask=[[1, 2], [3, 4]],
                                           mask_operation=pnl.MULTIPLY)
        c = pnl.Composition(pathways=[[t1, proj, t2]])
        val = c.execute(inputs={t1: [1, 2]})
        assert np.allclose(val, [[1, 8]])

    def test_masked_mapping_projection_mask_conficts_with_matrix(self):

        with pytest.raises(pnl.MaskedMappingProjectionError) as error_text:

            t1 = pnl.TransferMechanism(size=2)
            t2 = pnl.TransferMechanism(size=2)
            pnl.MaskedMappingProjection(sender=t1,
                                        receiver=t2,
                                        mask=[[1, 2, 3], [4, 5, 6]],
                                        mask_operation=pnl.MULTIPLY)
        assert "Shape of the 'mask'" in str(error_text.value)
        assert "((2, 3)) must be the same as its 'matrix' ((2, 2))" in str(
            error_text.value)

    # FIX 7/22/15 [JDC] - REPLACE WITH MORE ELABORATE TESTS OF DUPLICATE PROJECTIONS:
    #                     SAME FROM OutputPort;  SAME TO InputPort
    #                     TEST ERROR MESSAGES GENERATED BY VARIOUS _check_for_duplicates METHODS
    # def test_duplicate_projection_detection_and_warning(self):
    #
    #     with pytest.warns(UserWarning) as record:
    #         T1 = pnl.TransferMechanism(name='T1')
    #         T2 = pnl.TransferMechanism(name='T2')
    #         T3 = pnl.TransferMechanism(name='T3')
    #         T4 = pnl.TransferMechanism(name='T4')
    #
    #         MP1 = pnl.MappingProjection(sender=T1,receiver=T2,name='MP1')
    #         MP2 = pnl.MappingProjection(sender=T1,receiver=T2,name='MP2')
    #         pnl.proc(T1,MP1,T2,T3)
    #         pnl.proc(T1,MP2,T2,T4)
    #
    #     # hack to find a specific warning (other warnings may be generated by the Process construction)
    #     correct_message_found = False
    #     for warning in record:
    #         if "that already has an identical Projection" in str(warning.message):
    #             correct_message_found = True
    #             break
    #
    #     assert len(T2.afferents)==1
    #     assert correct_message_found

    def test_duplicate_projection_creation_error(self):

        from psyneulink.core.components.projections.projection import DuplicateProjectionError
        with pytest.raises(DuplicateProjectionError) as record:
            T1 = pnl.TransferMechanism(name='T1')
            T2 = pnl.TransferMechanism(name='T2')
            pnl.MappingProjection(sender=T1, receiver=T2, name='MP1')
            pnl.MappingProjection(sender=T1, receiver=T2, name='MP2')
        assert 'Attempt to assign Projection to InputPort-0 of T2 that already has an identical Projection.' \
               in record.value.args[0]
Exemple #14
0
    name='Hidden Layer_2',
    default_variable=[0, 0, 0, 0],
    function=psyneulink.core.components.functions.nonstateful.transferfunctions.Logistic()
)

Output_Layer = pnl.TransferMechanism(
    name='Output Layer',
    default_variable=[0, 0, 0],
    function=psyneulink.core.components.functions.nonstateful.transferfunctions.Logistic
)

Gating_Mechanism = pnl.GatingMechanism(
    # default_gating_allocation=0.0,
    size=[1],
    gating_signals=[
        Hidden_Layer_1,
        Hidden_Layer_2,
        Output_Layer,
    ]
)

Input_Weights_matrix = (np.arange(2 * 5).reshape((2, 5)) + 1) / (2 * 5)
Middle_Weights_matrix = (np.arange(5 * 4).reshape((5, 4)) + 1) / (5 * 4)
Output_Weights_matrix = (np.arange(4 * 3).reshape((4, 3)) + 1) / (4 * 3)

# TEST PROCESS.LEARNING WITH:
# CREATION OF FREE STANDING PROJECTIONS THAT HAVE NO LEARNING (Input_Weights, Middle_Weights and Output_Weights)
# INLINE CREATION OF PROJECTIONS (Input_Weights, Middle_Weights and Output_Weights)
# NO EXPLICIT CREATION OF PROJECTIONS (Input_Weights, Middle_Weights and
# Output_Weights)
def test_gating_with_UDF():
    def my_linear_fct(x,
                      m=2.0,
                      b=0.0,
                      params={
                          pnl.ADDITIVE_PARAM: 'b',
                          pnl.MULTIPLICATIVE_PARAM: 'm'
                      }):
        return m * x + b

    def my_simple_linear_fct(x, m=1.0, b=0.0):
        return m * x + b

    def my_exp_fct(
            x,
            r=1.0,
            # b=pnl.CONTROL,
            b=0.0,
            params={
                pnl.ADDITIVE_PARAM: 'b',
                pnl.MULTIPLICATIVE_PARAM: 'r'
            }):
        return x**r + b

    def my_sinusoidal_fct(input,
                          phase=0,
                          amplitude=1,
                          params={
                              pnl.ADDITIVE_PARAM: 'phase',
                              pnl.MULTIPLICATIVE_PARAM: 'amplitude'
                          }):
        frequency = input[0]
        t = input[1]
        return amplitude * np.sin(2 * np.pi * frequency * t + phase)

    Input_Layer = pnl.TransferMechanism(name='Input_Layer',
                                        default_variable=np.zeros((2, )),
                                        function=psyneulink.core.components.
                                        functions.transferfunctions.Logistic)

    Output_Layer = pnl.TransferMechanism(
        name='Output_Layer',
        default_variable=[0, 0, 0],
        function=psyneulink.core.components.functions.transferfunctions.Linear,
        # function=pnl.Logistic,
        # output_states={pnl.NAME: 'RESULTS USING UDF',
        #                pnl.VARIABLE: [(pnl.OWNER_VALUE,0), pnl.TIME_STEP],
        #                pnl.FUNCTION: my_sinusoidal_fct}
        output_states={
            pnl.NAME:
            'RESULTS USING UDF',
            # pnl.VARIABLE: (pnl.OWNER_VALUE, 0),
            pnl.FUNCTION:
            psyneulink.core.components.functions.transferfunctions.Linear(
                slope=pnl.GATING)
            # pnl.FUNCTION: pnl.Logistic(gain=pnl.GATING)
            # pnl.FUNCTION: my_linear_fct
            # pnl.FUNCTION: my_exp_fct
            # pnl.FUNCTION:pnl.UserDefinedFunction(custom_function=my_simple_linear_fct,
            #                                      params={pnl.ADDITIVE_PARAM:'b',
            #                                              pnl.MULTIPLICATIVE_PARAM:'m',
            #                                              },
            # m=pnl.GATING,
            # b=2.0
            # )
        })

    Gating_Mechanism = pnl.GatingMechanism(
        # default_gating_allocation=0.0,
        size=[1],
        gating_signals=[
            # Output_Layer
            Output_Layer.output_state,
        ])

    p = pnl.Process(size=2,
                    pathway=[Input_Layer, Output_Layer],
                    prefs={
                        pnl.VERBOSE_PREF: False,
                        pnl.REPORT_OUTPUT_PREF: False
                    })

    g = pnl.Process(default_variable=[1.0], pathway=[Gating_Mechanism])

    stim_list = {
        Input_Layer: [[-1, 30], [-1, 30], [-1, 30], [-1, 30]],
        Gating_Mechanism: [[0.0], [0.5], [1.0], [2.0]]
    }

    mySystem = pnl.System(processes=[p, g])

    mySystem.reportOutputPref = False

    results = mySystem.run(
        num_trials=4,
        inputs=stim_list,
    )

    expected_results = [[np.array([0., 0., 0.])],
                        [np.array([0.63447071, 0.63447071, 0.63447071])],
                        [np.array([1.26894142, 1.26894142, 1.26894142])],
                        [np.array([2.53788284, 2.53788284, 2.53788284])]]

    np.testing.assert_allclose(results, expected_results)
Exemple #16
0
        # pnl.FUNCTION: pnl.Logistic(gain=pnl.GATING)
        # pnl.FUNCTION: my_linear_fct
        # pnl.FUNCTION: my_exp_fct
        # pnl.FUNCTION:pnl.UserDefinedFunction(custom_function=my_simple_linear_fct,
        #                                      params={pnl.ADDITIVE_PARAM:'b',
        #                                              pnl.MULTIPLICATIVE_PARAM:'m',
        #                                              },
        # m=pnl.GATING,
        # b=2.0
        # )
    })

Gating_Mechanism = pnl.GatingMechanism(
    # default_gating_allocation=0.0,
    size=[1],
    gating_signals=[
        # Output_Layer
        Output_Layer.output_port,
    ])


def print_header(system):
    print("\n\n**** Time: ", system.scheduler.get_clock(system).simple_time)


def show_target(context=None):
    print('Gated: ',
          Gating_Mechanism.gating_signals[0].efferents[0].receiver.owner.name,
          Gating_Mechanism.gating_signals[0].efferents[0].receiver.name)
    print('- Input_Layer.value:                  ',
          Input_Layer.parameters.value.get(context))
def test_gating_with_UDF_with_composition():
    def my_linear_fct(x,
                      m=2.0,
                      b=0.0,
                      params={
                          pnl.ADDITIVE_PARAM: 'b',
                          pnl.MULTIPLICATIVE_PARAM: 'm'
                      }):
        return m * x + b

    def my_simple_linear_fct(x, m=1.0, b=0.0):
        return m * x + b

    def my_exp_fct(
            x,
            r=1.0,
            # b=pnl.CONTROL,
            b=0.0,
            params={
                pnl.ADDITIVE_PARAM: 'b',
                pnl.MULTIPLICATIVE_PARAM: 'r'
            }):
        return x**r + b

    def my_sinusoidal_fct(input,
                          phase=0,
                          amplitude=1,
                          params={
                              pnl.ADDITIVE_PARAM: 'phase',
                              pnl.MULTIPLICATIVE_PARAM: 'amplitude'
                          }):
        frequency = input[0]
        t = input[1]
        return amplitude * np.sin(2 * np.pi * frequency * t + phase)

    Input_Layer = pnl.TransferMechanism(
        name='Input_Layer',
        default_variable=np.zeros((2, )),
        function=psyneulink.core.components.functions.nonstateful.
        transferfunctions.Logistic)

    Output_Layer = pnl.TransferMechanism(
        name='Output_Layer',
        default_variable=[0, 0, 0],
        function=psyneulink.core.components.functions.nonstateful.
        transferfunctions.Linear,
        # function=pnl.Logistic,
        # output_ports={pnl.NAME: 'RESULTS USING UDF',
        #                pnl.VARIABLE: [(pnl.OWNER_VALUE,0), pnl.TIME_STEP],
        #                pnl.FUNCTION: my_sinusoidal_fct}
        output_ports={
            pnl.NAME:
            'RESULTS USING UDF',
            # pnl.VARIABLE: (pnl.OWNER_VALUE, 0),
            pnl.FUNCTION:
            psyneulink.core.components.functions.nonstateful.transferfunctions.
            Linear(slope=pnl.GATING)
        })

    Gating_Mechanism = pnl.GatingMechanism(
        size=[1],
        gating_signals=[
            # Output_Layer
            Output_Layer.output_port,
        ])

    comp = Composition()
    comp.add_linear_processing_pathway(pathway=[Input_Layer, Output_Layer])
    comp.add_node(Gating_Mechanism)

    stim_list = {
        Input_Layer: [[-1, 30], [-1, 30], [-1, 30], [-1, 30]],
        Gating_Mechanism: [[0.0], [0.5], [1.0], [2.0]]
    }

    comp.run(num_trials=4, inputs=stim_list)

    expected_results = [[np.array([0., 0., 0.])],
                        [np.array([0.63447071, 0.63447071, 0.63447071])],
                        [np.array([1.26894142, 1.26894142, 1.26894142])],
                        [np.array([2.53788284, 2.53788284, 2.53788284])]]

    np.testing.assert_allclose(comp.results, expected_results)
Exemple #18
0
        # pnl.FUNCTION: pnl.Logistic(gain=pnl.GATING)
        # pnl.FUNCTION: my_linear_fct
        # pnl.FUNCTION: my_exp_fct
        # pnl.FUNCTION:pnl.UserDefinedFunction(custom_function=my_simple_linear_fct,
        #                                      params={pnl.ADDITIVE_PARAM:'b',
        #                                              pnl.MULTIPLICATIVE_PARAM:'m',
        #                                              },
        # m=pnl.GATING,
        # b=2.0
        # )
    })

Gating_Mechanism = pnl.GatingMechanism(
    # default_gating_policy=0.0,
    size=[1],
    gating_signals=[
        # Output_Layer
        Output_Layer.output_state,
    ])

p = pnl.Process(size=2,
                pathway=[Input_Layer, Output_Layer],
                prefs={
                    pnl.VERBOSE_PREF: False,
                    pnl.REPORT_OUTPUT_PREF: False
                })

g = pnl.Process(default_variable=[1.0], pathway=[Gating_Mechanism])

stim_list = {
    Input_Layer: [[-1, 30], [-1, 30], [-1, 30], [-1, 30]],