ids[temp == l] = self.valid_classes[l] return ids def encode_segmap(self, mask): # Put all void classes to zero for _voidc in self.void_classes: mask[mask == _voidc] = self.ignore_index for _validc in self.valid_classes: mask[mask == _validc] = self.class_map[_validc] return mask if __name__ == "__main__": import matplotlib.pyplot as plt augmentations = Compose([Scale(2048), RandomRotate(10), RandomHorizontallyFlip(0.5)]) local_path = "/datasets01/cityscapes/112817/" dst = cityscapesLoader(local_path, is_transform=True, augmentations=augmentations) bs = 4 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=0) for i, data_samples in enumerate(trainloader): imgs, labels = data_samples import pdb pdb.set_trace() imgs = imgs.numpy()[:, ::-1, :, :] imgs = np.transpose(imgs, [0, 2, 3, 1]) f, axarr = plt.subplots(bs, 2) for j in range(bs): axarr[j][0].imshow(imgs[j])
for l in range(0, n_classes): r[temp == l] = label_colours[l, 0] g[temp == l] = label_colours[l, 1] b[temp == l] = label_colours[l, 2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 return rgb if __name__ == "__main__": local_path = "/home/meetshah1995/datasets/segnet/CamVid" augmentations = Compose([RandomRotate(10), RandomHorizontallyFlip()]) dst = camvidLoader(local_path, is_transform=True, augmentations=augmentations) bs = 4 trainloader = data.DataLoader(dst, batch_size=bs) for i, data_samples in enumerate(trainloader): imgs, labels = data_samples imgs = imgs.numpy()[:, ::-1, :, :] imgs = np.transpose(imgs, [0, 2, 3, 1]) f, axarr = plt.subplots(bs, 2) for j in range(bs): axarr[j][0].imshow(imgs[j]) axarr[j][1].imshow(dst.decode_segmap(labels.numpy()[j])) plt.show()
g = temp.copy() b = temp.copy() for l in range(0, self.n_classes): r[temp == l] = self.class_colors[l][0] g[temp == l] = self.class_colors[l][1] b[temp == l] = self.class_colors[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 return rgb if __name__ == "__main__": augment = Compose([RandomHorizontallyFlip(), RandomRotate(6)]) local_path = "/private/home/meetshah/datasets/seg/vistas/" dst = mapillaryVistasLoader(local_path, img_size=(512, 1024), is_transform=True, augmentations=augment) bs = 8 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=4, shuffle=True) for i, data_samples in enumerate(trainloader): x = dst.decode_segmap(data_samples[1][0].numpy()) print("batch :", i)
ids[temp == l] = self.valid_classes[l] return ids def encode_segmap(self, mask): # Put all void classes to zero for _voidc in self.void_classes: mask[mask == _voidc] = self.ignore_index for _validc in self.valid_classes: mask[mask == _validc] = self.class_map[_validc] return mask if __name__ == "__main__": import matplotlib.pyplot as plt augmentations = Compose([RandomHorizontallyFlip(0.5)]) local_path = "/datasets01/cityscapes/112817/" dst = tempestLoader(local_path, is_transform=True, augmentations=augmentations) bs = 4 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=0) for i, data_samples in enumerate(trainloader): imgs, labels = data_samples import pdb pdb.set_trace() imgs = imgs.numpy()[:, ::-1, :, :] imgs = np.transpose(imgs, [0, 2, 3, 1]) f, axarr = plt.subplots(bs, 2)
return img, lbl def decode_segmap(self, temp): r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, self.n_classes): r[temp == l] = self.class_colors[l][0] g[temp == l] = self.class_colors[l][1] b[temp == l] = self.class_colors[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 return rgb if __name__ == "__main__": augment = Compose([RandomRotate(6)]) local_path = "/home/ruslan/datasets" dst = mapillaryVistasLoader( local_path, img_size=(512, 1024), is_transform=True, augmentations=augment ) bs = 8 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=4, shuffle=True) for i, data_samples in enumerate(trainloader): x = dst.decode_segmap(data_samples[1][0].numpy()) print("batch :", i)
def encode_segmap(self, mask): # Put all void classes to zero for _voidc in self.void_classes: mask[mask == _voidc] = self.ignore_index for _validc in self.valid_classes: mask[mask == _validc] = self.class_map[_validc] #print(np.unique(mask)) return mask if __name__ == "__main__": import matplotlib.pyplot as plt #augmentations = Compose([Scale(800), RandomRotate(180), RandomHorizontallyFlip(0.5)]) augmentations = Compose([Scale(800), RandomHorizontallyFlip(0.5)]) local_path = "/data0/qilei_chen/old_alien/AI_EYE_IMGS/ROP_DATASET_with_label/9LESIONS" dst = ROPRidge_loader(local_path, is_transform=True, augmentations=augmentations) bs = 4 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=0) for i, data_samples in enumerate(trainloader): imgs, labels = data_samples #import pdb #pdb.set_trace() imgs = imgs.numpy()[:, ::-1, :, :] imgs = np.transpose(imgs, [0, 2, 3, 1]) f, axarr = plt.subplots(bs, 2)