Exemple #1
0
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as ss
import scipy.optimize as scp
import puk as puk

# fig, ax = plt.subplots(figsize = (16,8))
puk1 = puk.Puk(['Uelastisk/KastetCenter', 'Uelastisk/KastetSide'], 0.0569,
               0.0435)
puk2 = puk.Puk(['Uelastisk/StilleCenter', 'Uelastisk/StilleSide'], 0.0285,
               0.0432)


def findColUelastisk(puk1, puk2):
    ts = puk1.get_center(0)
    xs1 = puk1.get_center(1)
    ys1 = puk1.get_center(2)
    xs2 = puk2.get_center(1)
    ys2 = puk2.get_center(2)
    t_point = 0
    i = 0
    #Tjek om de to radier er tæt nok på hinanden til at de har kollideret, hvor efter t-værdiens
    #index retuneres
    for t in ts:
        r1 = np.array(xs1[i], ys1[i])
        r2 = np.array(xs2[i], ys2[i])
        if (np.linalg.norm(r2 - r1) <= puk1.get_r() + puk2.get_r()):
            t_point = i
        else:
            i += 1
    return t_point
import puk as puk
import matplotlib.pyplot as plt
from matplotlib import animation, rc

fig, ax = plt.subplots(figsize=(8, 8))

Rota_Kastet = puk.Puk(['Rota/KastetCenter', 'Rota/KastetSide'], 1, 1)
Rota_Stille = puk.Puk(['Rota/StilleCenter', 'Rota/StilleSide'], 1, 1)

Rota_Kastet = puk.Puk(['Elastisk/KastetCenter', 'Elastisk/KastetSide'], 1, 1)
Rota_Stille = puk.Puk(['Elastisk/StilleCenter', 'Elastisk/StilleSide'], 1, 1)

puks = [Rota_Kastet, Rota_Stille]


def pukanim(puks, ax):
    N = len(puks[0].get_center(0))
    color = ['bo', 'ro', 'ko', 'ko']

    puk11 = ax.plot(puks[0].get_center(1)[0],
                    puks[0].get_center(2)[0],
                    color[0],
                    label='Puk distance',
                    ms=18)[0]
    puk21 = ax.plot(puks[1].get_center(1)[0],
                    puks[1].get_center(2)[0],
                    color[1],
                    label='Puk distance',
                    ms=18)[0]
    puk12 = ax.plot(puks[0].get_edge(1)[0],
                    puks[0].get_edge(2)[0],
Exemple #3
0
import numpy as np
import matplotlib.pyplot as plt
import puk as puk
import fejlpropagering as fejl
import chi_sq as chi

fig, ax = plt.subplots(figsize = (30,15))

strings = ['Data0', 'Data2', 'Data4']

trials = []
trials.append([puk.Puk(['Rota/KastetCenter', 'Rota/KastetSide'], 0.0278, 0.0807),
               puk.Puk(['Rota/StilleCenter', 'Rota/StilleSide'], 0.0278, 0.0807)])

colors = ['r', 'b', 'g', 'k--']

a = []

a.append(puk.plot_Puks_angular_momentum(trials[0], ax, colors, alpha = 0.6))
ax.set_xlabel('t/s', fontsize = 20)
ax.set_ylabel('L', fontsize = 20)
ax.set_title('Impulsmoment over tid', fontsize = 24)
ax.legend()
plt.show()
fig.savefig('rota_impuls')
Exemple #4
0
import numpy as np
import matplotlib.pyplot as plt
import puk as puk
import fejlpropagering as fejl
import chi_sq as chi

fig, ax = plt.subplots(figsize=(30, 15))

strings = ['Data0', 'Data2', 'Data4']

trials = []
trials.append([
    puk.Puk(['Rota/KastetCenter', 'Rota/KastetSide'], 0.0278, 0.0807),
    puk.Puk(['Rota/StilleCenter', 'Rota/StilleSide'], 0.0278, 0.0807)
])

colors = ['r', 'b', 'g', 'k--']

a = []

a.append(puk.plot_Puks_energy(trials[0], ax, colors, alpha=0.6))
ax.set_xlabel('t/s', fontsize=20)
ax.set_ylabel('E', fontsize=20)
ax.set_title('Energi_over tid', fontsize=24)
ax.legend()
plt.show()
fig.savefig('rota_energi')
import numpy as np
import puk as puk
import matplotlib.pyplot as plt
import scipy.optimize as scp
fig, ax = plt.subplots()
puk1 = puk.Puk(['Elastisk/StilleCenter', 'Elastisk/StilleSide'], 0.0278,
               0.0807)
puk2 = puk.Puk(['Elastisk/KastetCenter', 'Elastisk/KastetSide'], 0.0278,
               0.0807)
puk3 = puk.Puk(['Rota/KastetCenter', 'Rota/KastetSide'], 0.0278, 0.0807)
puk4 = puk.Puk(['Rota/StilleCenter', 'Rota/StilleSide'], 0.0278, 0.0807)


def linear(t, a, b):
    return a * t + b


def findcol(Puk):
    xs = Puk.center[:, 1]
    ts = Puk.center[:, 0]
    ax.scatter(ts, xs)
    curve1 = [ts[:8], xs[:8]]
    inte = len(xs) - 8
    curve2 = [ts[inte:], xs[inte:]]
    popt1, cov1 = scp.curve_fit(linear,
                                curve1[0],
                                curve1[1],
                                absolute_sigma=True)
    popt2, cov2 = scp.curve_fit(linear,
                                curve2[0],
                                curve2[1],
import numpy as np
import puk as puk

Rota_Kastet = puk.Puk(['Data/Data0/KastetCenter', 'Data/Data0/KastetSide'], 1,
                      1)
Rota_Stille = puk.Puk(['Data/Data0/StilleCenter', 'Data/Data0/StilleSide'], 1,
                      1)
puks = [Rota_Kastet, Rota_Stille]


def b_vardi(puks):
    angle = np.arctan2(puks[0].y_velocity()[0], puks[0].x_velocity()[0])
    puk1 = np.array(puks[0].get_center(2) * np.cos(angle) -
                    puks[0].get_center(1) * np.sin(angle))
    puk2 = np.array(puks[1].get_center(2) * np.cos(angle) -
                    puks[1].get_center(1) * np.sin(angle))
    t = puks[0].col_t()
    b = sum(puk1[:t]) / t - sum(puk2[:t]) / t
    print(len(puk1[:t]), t)
    print(puk1[:t])
    return b


print(b_vardi(puks))
import numpy as np
import matplotlib.pyplot as plt
import puk as puk
import fejlpropagering as fejl
import chi_sq as chi

fig, ax = plt.subplots(2, 2, figsize=(30, 15))
ax = ax.ravel()

strings = ['Data0', 'Data2', 'Data4']

trials = []
for s in strings:
    trials.append([
        puk.Puk(['Data/' + s + '/KastetCenter', 'Data/' + s + '/KastetSide'],
                0.0278, 0.0807),
        puk.Puk(['Data/' + s + '/StilleCenter', 'Data/' + s + '/StilleSide'],
                0.0278, 0.0807)
    ])

colors = ['r', 'b', 'g', 'k--']

a = []

for t, ax in zip(trials, ax):
    a.append(puk.plot_Puks_energy(t, ax, colors, alpha=0.6))


def tot_angu_err(Puks):
    return np.sqrt(Puks[0].angu_err()**2 + Puks[1].angu_err()**2)
Exemple #8
0
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as ss
import scipy.optimize as scp
from matplotlib import animation, rc
import puk as puk
from scipy.integrate import solve_ivp
rc('animation', html='jshtml')
fig, ax = plt.subplots()
puk2 = puk.Puk(['Rota/KastetCenter', 'Rota/KastetSide'], 0.0278, 0.04035)
puk1 = puk.Puk(['Rota/StilleCenter', 'Rota/StilleSide'], 0.0278, 0.04035)
r02 = [puk2.get_center(1)[0], puk2.get_center(2)[0]]
r01 = [puk1.get_center(1)[0], puk1.get_center(2)[0]]
I = 1 / 2 * 0.0278 * 0.04035**2
R = 0.04035
m = 0.0278


def findv0(puk):
    xs = puk.get_center(1)[:5]
    ys = puk.get_center(2)[:5]
    ts = puk.get_center(0)[:5]
    angs = puk.angle()[:5]
    f = lambda x, a, b: a * x + b
    popt1, cov1 = scp.curve_fit(f, ts, xs, absolute_sigma=True)
    popt2, cov2 = scp.curve_fit(f, ts, ys, absolute_sigma=True)
    popt3, cov3 = scp.curve_fit(f, ts, angs, absolute_sigma=True)
    return [popt1[0], popt2[0], popt3[0]]


v01 = findv0(puk1)