Exemple #1
0
def test_scatter_correlation():
    x = np.arange(100)
    _, ax = plt.subplots()
    ax = scatter_correlation(x, x, ax=ax)
    npt.assert_equal(len(ax.texts), 1)
    npt.assert_equal('$r$=1.000' in ax.texts[0].get_text(), True)
    # Ignore NaN:
    ax = scatter_correlation([0, 1, np.nan, 3], [0, 1, 2, 3])
    npt.assert_equal('$r$=1.000' in ax.texts[0].get_text(), True)
    with pytest.raises(ValueError):
        scatter_correlation(np.arange(10), np.arange(11))
    with pytest.raises(ValueError):
        scatter_correlation([1], [2])
Exemple #2
0
plt.ylim(0, 60)

# set plot labels and title
plt.xlabel('Amplitude (uA) / Threshold (uA)')
plt.ylabel('Brightness Rating')
plt.title('Amplitude Modulation Brightness')


###############################################################################
# Using Built-In Plotting Functionality
# -----------------
#
# Arguably the most important column is "freq". This is the current
# amplitude of the different stimuli (single pulse, pulse trains, etc.) used
# at threshold.
#
# We might be interested in seeing how the phosphene brightness varies as a function
# of pulse frequency. We could either use Matplotlib to generate a scatter plot
# or use pulse2percept's own visualization function:

from pulse2percept.viz import scatter_correlation
scatter_correlation(data.freq, data.brightness)

###############################################################################
# :py:func:`~pulse2percept.viz.scatter_correlation` above generates a scatter
# plot of the phosphene brightness as a function of pulse frequency, and performs
# linear regression to calculate a correlation $r$ and a $p$ value.
# As expected from the literature, now it becomes evident that phosphene
# brightness is positively correlated with pulse frequency
#
Exemple #3
0
print(load_horsager2009(stim_types='single_pulse'))

###############################################################################
# Plotting the data
# -----------------
#
# Arguably the most important column is "stim_amp". This is the current
# amplitude of the different stimuli (single pulse, pulse trains, etc.) used
# at threshold.
#
# We might be interested in seeing how threshold amplitude varies as a function
# of pulse duration. We could either use Matplotlib to generate a scatter plot
# or use pulse2percept's own visualization function:

from pulse2percept.viz import scatter_correlation
scatter_correlation(data.pulse_dur, data.stim_amp)

###############################################################################
# :py:func:`~pulse2percept.viz.scatter_correlation` above generates a scatter
# plot of the stimulus amplitude as a function of pulse duration, and performs
# linear regression to calculate a correlation $r$ and a $p$ value.
# As expected from the literature, now it becomes evident that stimulus
# amplitude is negatively correlated with pulse duration (no matter the exact
# stimulus used).
#
# Recreating the stimuli
# ----------------------
#
# To recreate the stimulus used to obtain a specific data point, we need to use
# the values specified in the different columns of a particular row.
#