data_provider = datasets.ImagenetDataProvider( save_path=args.data_path, train_batch_size=args.train_batch_size, test_batch_size=args.test_batch_size, valid_size=None, n_worker=args.n_worker, resize_scale=args.resize_scale, distort_color=args.distort_color) logger.info('Creating data provider done') if args.no_decay_keys: keys = args.no_decay_keys momentum, nesterov = 0.9, True optimizer = torch.optim.SGD([ { 'params': get_parameters(model, keys, mode='exclude'), 'weight_decay': 4e-5 }, { 'params': get_parameters(model, keys, mode='include'), 'weight_decay': 0 }, ], lr=0.05, momentum=momentum, nesterov=nesterov) else: optimizer = torch.optim.SGD(get_parameters(model), lr=0.05, momentum=momentum, nesterov=nesterov,
logger.info('Creating data provider...') data_provider = datasets.ImagenetDataProvider(save_path=args.data_path, train_batch_size=args.train_batch_size, test_batch_size=args.test_batch_size, valid_size=None, n_worker=args.n_worker, resize_scale=args.resize_scale, distort_color=args.distort_color) logger.info('Creating data provider done') if args.no_decay_keys: keys = args.no_decay_keys momentum, nesterov = 0.9, True optimizer = torch.optim.SGD([ {'params': get_parameters(model, keys, mode='exclude'), 'weight_decay': 4e-5}, {'params': get_parameters(model, keys, mode='include'), 'weight_decay': 0}, ], lr=0.05, momentum=momentum, nesterov=nesterov) else: optimizer = torch.optim.SGD(get_parameters(model), lr=0.05, momentum=momentum, nesterov=nesterov, weight_decay=4e-5) if args.train_mode == 'search': # this is architecture search logger.info('Creating ProxylessNasTrainer...') trainer = ProxylessNasTrainer(model, model_optim=optimizer, train_loader=data_provider.train, valid_loader=data_provider.valid, device=device, warmup=args.warmup, ckpt_path=args.checkpoint_path,