def get_vertical_cages(rows):
    transpose_coordinates = lambda t: (t[1], t[0])
    res = get_horizontal_cages(transpose(rows))
    res = walk_keys(transpose_coordinates, res)
    transpose_coordinates_lst = compose(list,
                                        partial(map, transpose_coordinates))
    res = walk_values(transpose_coordinates_lst, res)
    return res
def solve_puzzle_takuzu(puzzle, *, height, width):
    board = IntMatrix('b', nb_rows=height, nb_cols=width)

    assert width % 2 == 0, 'Width must be pair'
    assert height % 2 == 0, 'Height must be pair'

    vars_ = flatten(board)
    vals = flatten(puzzle)
    instance_c = [var == val for var, val in zip(vars_, vals) if val > -1]

    complete_c = [Xor(cell == 0, cell == 1) for cell in flatten(board)]

    # Equal number of 1s and 0s: so there are n/2 1s and n/2 0s
    _horiz_count_c = [Sum(row) == width / 2 for row in board]
    _vertical_count_c = [Sum(row) == height / 2 for row in transpose(board)]
    count_c = _horiz_count_c + _vertical_count_c

    # Rows or columns are unique
    def get_id(sequence):
        base = 2
        return Sum([val * base**pos for pos, val in enumerate(sequence)])

    row_unique_c = [Distinct([get_id(row) for row in board])]
    col_unique_c = [Distinct([get_id(row) for row in transpose(board)])]

    # No more than 2 adjacent 1s or 0s
    def gen_adj_constraints(sequence):
        adjs = windowed(sequence, 3)
        # if three adjacent boxes are 0(resp 1) , sum is 0(resp 3).
        # Among the eight possibilities of three adjacent boxes
        return [And(Sum(adj) != 0, Sum(adj) != 3) for adj in adjs]

    _row_adj_c = flatten([gen_adj_constraints(row) for row in board])
    _col_adj_c = flatten(
        [gen_adj_constraints(row) for row in transpose(board)])
    adj_c = _row_adj_c + _col_adj_c

    s = Solver()
    s.add(instance_c + complete_c + count_c + row_unique_c + col_unique_c +
          adj_c)

    s.check()
    m = s.model()
    return [[m[cell] for cell in row] for row in board]
Exemple #3
0
def solve_pattern(runs_columnwise, runs_rowwise, height, width):
    X = IntMatrix('c', nb_rows=height, nb_cols=width)

    assert len(runs_rowwise) == len(X) == height
    rowwise_c = [ gen_constraints_vars_runs(row, runs)
            for row, runs in zip(X, runs_rowwise)]

    X_trans = transpose(X)

    assert len(runs_columnwise) == len(X_trans) == width
    colwise_c = [ gen_constraints_vars_runs(row, runs)
            for row, runs in zip(X_trans, runs_columnwise)]

    s = Solver()
    s.add( rowwise_c + colwise_c )
    s.check()
    m = s.model()
    return [ [ m[cell] for cell in row] for row in X ]
Exemple #4
0
def solve_tower_puzzle(n, top, left, right, bottom, instance=None):
    knowl = gen_knowl_dict(n)
    X = IntMatrix('h', n, n)
    X_trans = transpose(X)

    assert len(top) == len(left) == n
    assert len(right) == len(bottom) == n

    latin_c = gen_latin_square_constraints(X, n)

    left_c = [
        constrain_towers(row, h, knowl) for row, h in zip(X, left) if h > 0
    ]
    right_c = [
        constrain_towers(row[::-1], h, knowl) for row, h in zip(X, right)
        if h > 0
    ]

    top_c = [
        constrain_towers(row, h, knowl) for row, h in zip(X_trans, top)
        if h > 0
    ]
    bottom_c = [
        constrain_towers(row[::-1], h, knowl)
        for row, h in zip(X_trans, bottom) if h > 0
    ]

    s = Solver()
    s.add(latin_c + left_c + right_c + top_c + bottom_c)

    if instance is not None:
        for row_v, row in zip(X, instance):
            for var, value in zip(row_v, row):
                if value > 0:
                    s.add(var == value)

    s.check()
    m = s.model()

    res = [[m[s] for s in row] for row in X]
    return res
def solve_puzzle_range(puzzle, *, height, width):
    board = IntMatrix('b', nb_rows=height, nb_cols=width)
    pars = {'board': board, 'width': width, 'height': height}

    contig_c = gen_contiguous_constraints(puzzle, **pars)

    # There is no empty cell:
    complete_c = [Xor(cell == WHITE, cell == BLACK) for cell in flatten(board)]

    # No two black squares are adjacent: horizontal
    horiz_bl_c = [[
        And(cell_1 == BLACK, cell_2 == BLACK)
        for cell_1, cell_2 in zip(row, row[1:])
    ] for row in board]
    horiz_bl_c = flatten(horiz_bl_c)

    horiz_bl_c = AtMost(*horiz_bl_c, 0)

    # No two black squares are adjacent: vertical
    vertic_bl_c = [[
        And(cell_1 == BLACK, cell_2 == BLACK)
        for cell_1, cell_2 in zip(row, row[1:])
    ] for row in transpose(board)]
    vertic_bl_c = flatten(vertic_bl_c)

    vertic_bl_c = AtMost(*vertic_bl_c, 0)

    # No two black squares are adjancent: vertically or horizontall (ortho)
    ortho_bl_c = [horiz_bl_c, vertic_bl_c]

    s = Solver()

    s.add(contig_c + complete_c + ortho_bl_c)

    s.check()
    m = s.model()
    return [[m[cell] for cell in row] for row in board]
def solve_tracks(*, tracks, start_index, end_index, horizontal_clues,
                 vertical_clues, height, width):
    X = IntMatrix('t', nb_rows=height, nb_cols=width)
    assert sum(horizontal_clues) == sum(vertical_clues)
    nb_occupied_cells = sum(horizontal_clues)
    MAX = nb_occupied_cells

    cells = list(itertools.chain(*X))
    range_c = [And(n >= 0, n <= nb_occupied_cells) for n in cells]

    at_ = lambda l, c: X[l][c]
    extremities_c = [at_(*start_index) == 1, at_(*end_index) == MAX]
    for index_, pattern in tracks:
        l, c = index_
        bottom, left, top, right = map(int, list(pattern))
        bottom, left, top, right = bottom == 1, left == 1, top == 1, right == 1
        if index_ == start_index:
            # the starting track is the leftmost
            # so it has no left
            if bottom:
                nxt = l + 1, c
            elif top:
                nxt = l - 1, c
            elif right:
                nxt = l, c + 1
            curr_var = at_(*index_)
            nxt_var = at_(*nxt)
            extremities_c.append(nxt_var == curr_var + 1)
        elif index_ == end_index:
            # the ending track is the bottommost
            # so it has no bottom
            if top:
                prv = l - 1, c
            if right:
                prv = l, c + 1
            if left:
                prv = l, c - 1
            curr_var = at_(*index_)
            prv_var = at_(*prv)
            extremities_c.append(curr_var == prv_var + 1)

    X_trans = transpose(X)

    # Exactly count_ occupied (> 0) cells in each row
    row_sums_c = [
        Exactly(*[cell > 0 for cell in row], count_)
        for row, count_ in zip(X, vertical_clues)
    ]

    row_sums_c = [
        Exactly(*[cell > 0 for cell in row], count_)
        for row, count_ in zip(X, vertical_clues)
    ]

    col_sums_c = [
        Exactly(*[cell > 0 for cell in row], count_)
        for row, count_ in zip(X_trans, horizontal_clues)
    ]

    # we give unique_id to unoccupied cell. for using Distinct on occupied cells
    distinct_c = Distinct(
        [If(cell > 0, cell, -i) for i, cell in enumerate(cells, 1)])
    # Every occupied cell is at a given 'distance' to the start.
    # No other cell has the same distance
    distinct_c = [distinct_c]

    def get_adj_track_indices(index_, pattern):
        l, c = index_
        bottom, left, top, right = map(int, list(pattern))
        bottom, left, top, right = bottom == 1, left == 1, top == 1, right == 1
        res = []
        if left:
            # the starting track is the leftmost
            if index_ != start_index:
                res.append((l, c - 1))
        if right:
            res.append((l, c + 1))
        if top:
            res.append((l - 1, c))
        if bottom:
            # the ending track is the bottommost
            if index_ != end_index:
                res.append((l + 1, c))
        res.insert(1, index_)
        return res

    at_ = lambda l, c: X[l][c]

    def get_vars_at(indices):
        return [at_(*ind) for ind in indices]

    def coerce_sequential(vars_):
        curr, *succs = vars_
        ascending_c = And([nxt == curr + i for i, nxt in enumerate(succs, 1)])
        descending_c = And([nxt == curr - i for i, nxt in enumerate(succs, 1)])
        return Or(ascending_c, descending_c)

    # constraint forcing parts of the tracks to be in ascending or descending order
    sequential_c = []
    for index_, pattern in tracks:
        inds = get_adj_track_indices(index_, pattern)
        successive_track_vars = get_vars_at(inds)
        cnstrnt = coerce_sequential(successive_track_vars)
        sequential_c.append(cnstrnt)
    # The start and end track produces an absurd condition. but it would be weeded out by other constraints.

    def gen_consecutive_nums_constraint(l, c):
        geom = {'height': height, 'width': width}
        val_neighs = [
            neigh for neigh in neighbours((l, c))
            if inside_board(neigh, **geom)
        ]
        neighs = get_vars_at(val_neighs)

        var = at_(l, c)  #content of current cell
        one_adj_cell_is_consec_c = Exactly(*[adj == var + 1 for adj in neighs],
                                           1)
        current_cell_is_max_c = var == MAX
        unoccupied_c = var == 0
        return Or(unoccupied_c, current_cell_is_max_c,
                  one_adj_cell_is_consec_c)

    # constraint forcing one of the adjacent cells to be the 'successor'
    successor_c = [
        gen_consecutive_nums_constraint(l, c)
        for l, c in itertools.product(range(height), range(width))
    ]

    s = Solver()
    s.add(range_c + extremities_c + row_sums_c + col_sums_c + distinct_c +
          sequential_c + successor_c)

    s.check()
    m = s.model()

    res = [[m[s] for s in row] for row in X]
    return res
Exemple #7
0
def solve_magnets(*, tiles, positive_horizontal, positive_vertical,
                  negative_vertical, negative_horizontal, height, width):
    X = IntMatrix('m', nb_rows=height, nb_cols=width)

    # Let us concentrate on edge|pole|half of the tile|domino|magnet
    halves = flatten(X)
    # completeness
    complete_c = [
        Or([edge == POSITIVE, edge == NEGATIVE, edge == NEUTRAL])
        for edge in halves
    ]

    assert len(positive_vertical) == len(X)
    pos_vertic_c = [
        coerce_charge(row, POSITIVE, pos_v)
        for row, pos_v in zip(X, positive_vertical) if pos_v >= 0
    ]

    assert len(negative_vertical) == len(X)
    neg_vertic_c = [
        coerce_charge(row, NEGATIVE, neg_v)
        for row, neg_v in zip(X, negative_vertical) if neg_v >= 0
    ]

    X_trans = transpose(X)

    assert len(positive_horizontal) == len(X_trans)
    pos_horiz_c = [
        coerce_charge(row, POSITIVE, pos_h)
        for row, pos_h in zip(X_trans, positive_horizontal) if pos_h >= 0
    ]

    assert len(negative_horizontal) == len(X_trans)
    neg_horiz_c = [
        coerce_charge(row, NEGATIVE, neg_h)
        for row, neg_h in zip(X_trans, negative_horizontal) if neg_h >= 0
    ]

    def horiz_tile(l, c):
        return X[l][c], X[l][c + 1]

    def vertic_tile(l, c):
        return X[l][c], X[l + 1][c]

    horiz_tiles_c = [
        coerce_tile(*horiz_tile(l, c))
        for l, c in itertools.product(range(height), range(width))
        if tiles[l][c] == '>'
    ]

    vertic_tiles_c = [
        coerce_tile(*vertic_tile(l, c))
        for l, c in itertools.product(range(height), range(width))
        if tiles[l][c] == 'v'
    ]

    # edge1 edge2 may not belong to the same magnet|tile
    horiz_neigh_c = [[
        coerce_neigh(edge1, edge2) for edge1, edge2 in zip(row, row[1:])
    ] for row in X]
    horiz_neigh_c = flatten(horiz_neigh_c)

    vertic_neigh_c = [[
        coerce_neigh(edge1, edge2) for edge1, edge2 in zip(row, row[1:])
    ] for row in X_trans]
    vertic_neigh_c = flatten(vertic_neigh_c)

    s = Solver()
    s.add(complete_c + pos_vertic_c + pos_horiz_c + neg_vertic_c +
          neg_horiz_c + horiz_tiles_c + vertic_tiles_c + horiz_neigh_c +
          vertic_neigh_c)

    s.check()
    m = s.model()
    return [[m[edge] for edge in row] for row in X]
def solve_puzzle_dominosa(puzzle, *, height, width, order):
    board = IntMatrix('d', nb_rows=height, nb_cols=width)

    complete_c = [ Exactly( cell == VERTIC_START, cell == VERTIC_END,
            cell == HORIZ_START, cell == HORIZ_END, 1)
            for cell in flatten(board) ]

    _no_aberrant_horiz_c = []
    for row in board:
        for domino in pairwise(row):
            # not-head and tail
            abberrant_1 = And(domino[0] != HORIZ_START, domino[1] == HORIZ_END)
            # head and not-tail
            _no_aberrant_horiz_c.append(Not(abberrant_1))
            abberrant_2 = And(domino[0] == HORIZ_START, domino[1] != HORIZ_END)
            _no_aberrant_horiz_c.append(Not(abberrant_2))

    _no_aberrant_vertic_c = []
    for row in transpose(board):
        for domino in pairwise(row):
            # not-head and tail
            abberrant_1 = And(domino[0] != VERTIC_START, domino[1] == VERTIC_END)
            _no_aberrant_vertic_c.append(Not(abberrant_1))
            # head and not-tail
            abberrant_2 = And(domino[0] == VERTIC_START, domino[1] != VERTIC_END)
            _no_aberrant_vertic_c.append(Not(abberrant_2))

    _no_aberrant_horiz_border_cell_c = [And(row[0] != HORIZ_END, row[-1] != HORIZ_START)
            for row in board]

    _no_aberrant_vertic_border_cell_c = [And(row[0] != VERTIC_END, row[-1] != VERTIC_START)
            for row in transpose(board)]

    no_aberrant_c = ( _no_aberrant_horiz_c + _no_aberrant_horiz_border_cell_c +
                    _no_aberrant_vertic_c + _no_aberrant_vertic_border_cell_c )

    # By taking both the start_variable and end_variable we may not
    # need no_aberrant_c ... but it's better separated this way.
    unique_c = []
    locs_h = defaultdict(list) #locations
    for var_row, row in zip(board, puzzle):
        for var, dom in zip(var_row, pairwise(row)):
            locs_h[normalize_domino(dom)].append(var)
    locs_v = defaultdict(list)
    for var_row, row in zip(transpose(board), transpose(puzzle)):
        for var, dom in zip(var_row, pairwise(row)):
            locs_v[normalize_domino(dom)].append(var)
    # normalized domino
    for n_domino in itertools.combinations_with_replacement(range(order + 1), 2):
        if n_domino in locs_h and n_domino in locs_v:
            only_one_such_domino = Exactly(*[edge == VERTIC_START for edge in locs_v[n_domino]],
                *[edge == HORIZ_START for edge in locs_h[n_domino]],
                1)
            unique_c.append(only_one_such_domino)
        elif n_domino not in locs_h:
            only_one_such_domino = Exactly(*[edge == VERTIC_START for edge in locs_v[n_domino]], 1)
            unique_c.append(only_one_such_domino)
        elif n_domino not in locs_v:
            only_one_such_domino = Exactly(*[edge == HORIZ_START for edge in locs_h[n_domino]], 1)
            unique_c.append(only_one_such_domino)

    s = Solver()
    s.add(complete_c + no_aberrant_c + unique_c)
    s.check()
    m = s.model()
    return [ [m[cell] for cell in row] for row in board]
Exemple #9
0
def solve_tents(board, *, height, width, horizontal_tents, vertical_tents):
    preprocessed = preprocess(board, height=height, width=width)
    X = IntMatrix('t', nb_rows=height, nb_cols=width)

    at_ = lambda l, c: X[l][c]
    is_tree = lambda l, c: preprocessed[l][c] > 0

    # the coupling between a tree and a tent is unique. Think tile|domino
    def gen_coupling_constraints(l, c):
        val_neighs = [
            neigh for neigh in neighbours((l, c))
            if inside_board(neigh, height=height, width=width)
        ]
        couplings = [X[l][c] == -at_(*cell) for cell in val_neighs]
        # we don't add constraint that it is unoccupied by a tree
        # it's taken care by another set of constraints
        # return Exactly(*couplings, 1)
        return Exactly(*couplings, 1)

    # No two tents can be adjacent to each other.
    # None of the 8 directions. (think: King's move in chess).
    # The description above is the tent's point of view
    # If we take the board's point of view:
    # A square of 4 cells can contain at most 1 tree
    def gen_proximity_constraints(l, c):
        square = [
            (l, c),
            (l, c + 1),  # towards right
            (l + 1, c),
            (l + 1, c + 1)
        ]  # towards bottom and right
        val_cells_in_square = [
            cell for cell in square
            if inside_board(cell, height=height, width=width)
        ]
        # cell < 0 : we have encoded as tent
        tents_in_a_square = [at_(*cell) < 0 for cell in val_cells_in_square]
        return AtMost(*tents_in_a_square, 1)

    def coerce_nb_tents(cells, count_):
        tents = [cell < 0 for cell in cells]
        return Exactly(*tents, count_)

    MAX = height * width

    complete_c = [And(-MAX < cell, cell < MAX) for cell in flatten(X)]

    coupling_c = [
        gen_coupling_constraints(l, c)
        for l, c in itertools.product(range(height), range(width))
        if is_tree(l, c)
    ]

    instance_c = [
        at_(l, c) == preprocessed[l][c]
        for l, c in itertools.product(range(height), range(width))
        if preprocessed[l][c] > 0
    ]

    # In generating constraints we wander towards right and towards bottom
    # So : height - 1, width - 1
    tree_proximity_c = [
        gen_proximity_constraints(l, c)
        for l, c in itertools.product(range(height - 1), range(width - 1))
    ]

    NB_TREES = sum(cell > 0 for cell in flatten(preprocessed))
    same_number_trees_tents_c = [coerce_nb_tents(flatten(X), NB_TREES)]

    # vertical tents means nb tents in each line. Noted vertically on the board
    # on the left or right side
    assert len(vertical_tents) == height == len(X)
    row_sums_c = [
        coerce_nb_tents(row, count_v)
        for row, count_v in zip(X, vertical_tents)
    ]

    X_trans = transpose(X)
    # horizontal tents means nb tents in each line. Noted horizontally on the board
    # at the bottom of the board or top of the board
    assert len(horizontal_tents) == width == len(X_trans)
    # row in X_trans means col in X
    col_sums_c = [
        coerce_nb_tents(row, count_h)
        for row, count_h in zip(X_trans, horizontal_tents)
    ]

    # NOTE: if ever col_sums or row_sums are partially erased to add difficulty.
    # use -1. and add here if count_h >= 0

    s = Solver()
    s.add(complete_c + instance_c + coupling_c + tree_proximity_c +
          same_number_trees_tents_c + row_sums_c + col_sums_c)
    s.check()
    m = s.model()
    return [[m[cell] for cell in row] for row in X]