Exemple #1
0
    def generate_recall_record(self,index, box_preds,batch_dict,recall_dict, thresh_list=(0.5, 0.7)):
        rois = batch_dict["rois"][index]
        if batch_dict["gt_boxes"] is not None:
            gt_boxes = batch_dict["gt_boxes"][index]
            cur_gt = gt_boxes
            k = gt_boxes.__len__() - 1
            while k > 0 and cur_gt[k].sum() == 0:
                k -= 1
            cur_gt = cur_gt[:k + 1]
            cur_rois = rois
            if cur_gt.shape[0] > 0:
                iou3d_rcnn = iou3d_nms_utils.boxes_iou3d_gpu(box_preds, cur_gt[:, :7])
                iou3d_rois = iou3d_nms_utils.boxes_iou3d_gpu(cur_rois, cur_gt[:, :7])
                if recall_dict.__len__() == 0:
                    recall_dict["gt"] = 0
                    for thresh in thresh_list:
                        recall_dict["roi_%s" % str(thresh)] = 0
                        recall_dict["rcnn_%s" % str(thresh)] = 0

                recall_dict["gt"] += cur_gt.shape[0]
                for thresh in thresh_list:
                    rois_iou_max = iou3d_rois.max(dim=-1)[0]
                    rcnn_iou_max = iou3d_rcnn.max(dim=-1)[0]
                    recall_dict["roi_%s" % str(thresh)] += (rois_iou_max > thresh).sum().item()
                    recall_dict["rcnn_%s" % str(thresh)] += (rcnn_iou_max > thresh).sum().item()
        else:
            return {}

        return recall_dict
Exemple #2
0
def get_maxiou3d_with_same_class(rois, roi_labels, gt_boxes, gt_labels):
    """
    三类物体的rois与真实的gt boxes进行匹配,得到每个roi最匹配的gt boxe的indx
    :param rois: (N, 7)
    :param roi_labels: (N)
    :param gt_boxes: (N, 8)
    :return:
    """
    max_overlaps = rois.new_zeros(rois.shape[0])
    gt_assignment = roi_labels.new_zeros(roi_labels.shape[0])

    for k in range(gt_labels.min().item(), gt_labels.max().item() + 1):
        roi_mask = (roi_labels == k)
        gt_mask = (gt_labels == k)
        if roi_mask.sum() > 0 and gt_mask.sum() > 0:
            cur_roi = rois[roi_mask]
            cur_gt = gt_boxes[gt_mask]
            original_gt_assignment = gt_mask.nonzero().view(-1)

            iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_roi, cur_gt)  # (M, N)
            cur_max_overlaps, cur_gt_assignment = torch.max(iou3d, dim=1)
            max_overlaps[roi_mask] = cur_max_overlaps
            gt_assignment[roi_mask] = original_gt_assignment[cur_gt_assignment]

    return max_overlaps, gt_assignment
Exemple #3
0
    def get_iou_with_same_class(rois, roi_labels, gt_boxes):
        """
        gt_boxes:(num of box per image,8)
        rois:(512,7)
        roi—labels
        """
        gt_labels = gt_boxes[:, 7]
        gt_boxes = gt_boxes[:, :7]
        max_overlap = torch.zeros(rois.shape[0],
                                  dtype=torch.float32,
                                  device=gt_boxes.device)
        gt_assignment = torch.zeros(rois.shape[0],
                                    dtype=torch.long,
                                    device=gt_boxes.device)
        for idx in np.arange(gt_labels.min().item(),
                             gt_labels.max().item() + 1, 1):
            rois_mask_class = roi_labels == idx
            # rois_mask_class_for_see = rois_mask_class.nonzero().view(-1)
            gt_mask_class = gt_labels == idx
            gt_origin_assign = torch.nonzero(gt_mask_class).view(-1)

            if gt_mask_class.sum() > 0 and rois_mask_class.sum() > 0:
                cur_gt = gt_boxes[gt_mask_class]
                cur_rois = rois[rois_mask_class]
                iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_rois, cur_gt)
                cur_max_overlap, cur_gt_assign = torch.max(iou3d, dim=1)
                # cur_max_overlaps_see = cur_max_overlap.cpu().numpy()
                max_overlap[rois_mask_class] = cur_max_overlap
                gt_assignment[rois_mask_class] = gt_origin_assign[
                    cur_gt_assign]
        return max_overlap, gt_assignment
Exemple #4
0
def sample_rois_for_rcnn(roi_boxes3d, gt_boxes3d, roi_raw_scores, roi_labels,
                         roi_sampler_cfg):
    """
    :param roi_boxes3d: (B,512,7)
    :param gt_boxes3d: (B,M,7+1)这个1是box的种类(“car”,1,"Pedestrian",2,"Cyclist",3)
    :param roi_raw_scores:(B,512)
    :param roi_labels:(B,512)
    :param roi_samlpler_cfg:
    :return:
    """
    batch_size = roi_boxes3d.size(0)

    fg_rois_per_image = int(
        np.round(roi_sampler_cfg.FG_RATIO * roi_sampler_cfg.ROI_PER_IMAGE))

    code_size = roi_boxes3d.shape[-1]
    batch_rois = gt_boxes3d.new(batch_size, roi_sampler_cfg.ROI_PER_IMAGE,
                                code_size).zero_()
    batch_gt_of_rois = gt_boxes3d.new(batch_size,
                                      roi_sampler_cfg.ROI_PER_IMAGE,
                                      code_size + 1).zero_()
    batch_roi_iou = gt_boxes3d.new(batch_size,
                                   roi_sampler_cfg.ROI_PER_IMAGE).zero_()
    batch_roi_raw_scores = gt_boxes3d.new(
        batch_size, roi_sampler_cfg.ROI_PER_IMAGE).zero_()
    batch_roi_labels = gt_boxes3d.new(
        batch_size, roi_sampler_cfg.ROI_PER_IMAGE).zero_().long()

    for idx in range(batch_size):
        cur_roi, cur_gt, cur_roi_raw_scores, cur_roi_labels = \
            roi_boxes3d[idx], gt_boxes3d[idx], roi_raw_scores[idx], roi_labels[idx]

        k = cur_gt.__len__() - 1
        while k > 0 and cur_gt[k].sum() == 0:
            k -= 1
        cur_gt = cur_gt[:k + 1]

        if len(cfg.CLASS_NAMES) == 1:
            iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_roi,
                                                    cur_gt[:, 0:7])  # (M, N)
            max_overlaps, gt_assignment = torch.max(iou3d, dim=1)
        else:
            cur_gt_labels = cur_gt[:, -1].long()
            max_overlaps, gt_assignment = get_maxiou3d_with_same_class(
                cur_roi, cur_roi_labels, cur_gt[:, 0:7], cur_gt_labels)

        fg_thresh = min(roi_sampler_cfg.REG_FG_THRESH,
                        roi_sampler_cfg.CLS_FG_THRESH)  #0.55
        fg_inds = torch.nonzero((max_overlaps >= fg_thresh)).view(-1)
        #torch.nonzero这个函数是返回非0的元素的编号,这里返回的是roi的编号
        easy_bg_inds = torch.nonzero(
            (max_overlaps < roi_sampler_cfg.CLS_BG_THRESH_LO)).view(
                -1)  #小于0.1的是easy bg
        hard_bg_inds = torch.nonzero(
            (max_overlaps < roi_sampler_cfg.REG_FG_THRESH)
            & (max_overlaps >= roi_sampler_cfg.CLS_BG_THRESH_LO)).view(
                -1)  #在0.1到0.55之间的是hard

        fg_num_rois = fg_inds.numel()
        bg_num_rois = hard_bg_inds.numel() + easy_bg_inds.numel()

        if fg_num_rois > 0 and bg_num_rois > 0:
            # sampling fg
            fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois)

            rand_num = torch.from_numpy(
                np.random.permutation(fg_num_rois)).type_as(gt_boxes3d).long()
            fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]]

            # sampling bg
            bg_rois_per_this_image = roi_sampler_cfg.ROI_PER_IMAGE - fg_rois_per_this_image
            bg_inds = sample_bg_inds(hard_bg_inds, easy_bg_inds,
                                     bg_rois_per_this_image, roi_sampler_cfg)

        elif fg_num_rois > 0 and bg_num_rois == 0:
            # sampling fg
            rand_num = np.floor(
                np.random.rand(roi_sampler_cfg.ROI_PER_IMAGE) * fg_num_rois)
            rand_num = torch.from_numpy(rand_num).type_as(gt_boxes3d).long()
            fg_inds = fg_inds[rand_num]
            fg_rois_per_this_image = roi_sampler_cfg.ROI_PER_IMAGE
            bg_rois_per_this_image = 0
        elif bg_num_rois > 0 and fg_num_rois == 0:
            # sampling bg
            bg_rois_per_this_image = roi_sampler_cfg.ROI_PER_IMAGE
            bg_inds = sample_bg_inds(hard_bg_inds, easy_bg_inds,
                                     bg_rois_per_this_image, roi_sampler_cfg)

            fg_rois_per_this_image = 0
        else:
            print('maxoverlaps:(min=%f, max=%f)' %
                  (max_overlaps.min().item(), max_overlaps.max().item()))
            print('ERROR: FG=%d, BG=%d' % (fg_num_rois, bg_num_rois))
            raise NotImplementedError

        roi_list, roi_iou_list, roi_gt_list, roi_score_list, roi_labels_list = [], [], [], [], []
        if fg_rois_per_this_image > 0:
            fg_rois = cur_roi[fg_inds]
            gt_of_fg_rois = cur_gt[gt_assignment[fg_inds]]
            fg_iou3d = max_overlaps[fg_inds]

            roi_list.append(fg_rois)
            roi_iou_list.append(fg_iou3d)
            roi_gt_list.append(gt_of_fg_rois)
            roi_score_list.append(cur_roi_raw_scores[fg_inds])
            roi_labels_list.append(cur_roi_labels[fg_inds])

        if bg_rois_per_this_image > 0:
            bg_rois = cur_roi[bg_inds]
            gt_of_bg_rois = cur_gt[gt_assignment[bg_inds]]
            bg_iou3d = max_overlaps[bg_inds]

            roi_list.append(bg_rois)
            roi_iou_list.append(bg_iou3d)
            roi_gt_list.append(gt_of_bg_rois)
            roi_score_list.append(cur_roi_raw_scores[bg_inds])
            roi_labels_list.append(cur_roi_labels[bg_inds])

        rois = torch.cat(roi_list, dim=0)
        iou_of_rois = torch.cat(roi_iou_list, dim=0)
        gt_of_rois = torch.cat(roi_gt_list, dim=0)
        cur_roi_raw_scores = torch.cat(roi_score_list, dim=0)
        cur_roi_labels = torch.cat(roi_labels_list, dim=0)

        batch_rois[idx] = rois
        batch_gt_of_rois[idx] = gt_of_rois
        batch_roi_iou[idx] = iou_of_rois
        batch_roi_raw_scores[idx] = cur_roi_raw_scores
        batch_roi_labels[idx] = cur_roi_labels

    return batch_rois, batch_gt_of_rois, batch_roi_iou, batch_roi_raw_scores, batch_roi_labels
Exemple #5
0
    def sample_rois_for_rcnn(self, batch_dict):
        """
        Args:
            batch_dict:
                batch_size:
                rois: (B, num_rois, 7 + C)
                roi_scores: (B, num_rois)
                gt_boxes: (B, N, 7 + C + 1)
                roi_labels: (B, num_rois)
        Returns:

        """
        batch_size = batch_dict['batch_size']
        rois = batch_dict['rois']
        roi_scores = batch_dict['roi_scores']
        roi_labels = batch_dict['roi_labels']
        gt_boxes = batch_dict['gt_boxes']

        code_size = rois.shape[-1]
        batch_rois = rois.new_zeros(batch_size,
                                    self.roi_sampler_cfg.ROI_PER_IMAGE,
                                    code_size)
        batch_gt_of_rois = rois.new_zeros(batch_size,
                                          self.roi_sampler_cfg.ROI_PER_IMAGE,
                                          code_size + 1)
        batch_roi_ious = rois.new_zeros(batch_size,
                                        self.roi_sampler_cfg.ROI_PER_IMAGE)
        batch_roi_scores = rois.new_zeros(batch_size,
                                          self.roi_sampler_cfg.ROI_PER_IMAGE)
        batch_roi_labels = rois.new_zeros(
            (batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE), dtype=torch.long)

        for index in range(batch_size):
            cur_roi, cur_gt, cur_roi_labels, cur_roi_scores = \
                rois[index], gt_boxes[index], roi_labels[index], roi_scores[index]
            k = cur_gt.__len__() - 1
            while k > 0 and cur_gt[k].sum() == 0:
                k -= 1
            cur_gt = cur_gt[:k + 1]
            cur_gt = cur_gt.new_zeros(
                (1, cur_gt.shape[1])) if len(cur_gt) == 0 else cur_gt

            if self.roi_sampler_cfg.get('SAMPLE_ROI_BY_EACH_CLASS', False):
                max_overlaps, gt_assignment = self.get_max_iou_with_same_class(
                    rois=cur_roi,
                    roi_labels=cur_roi_labels,
                    gt_boxes=cur_gt[:, 0:7],
                    gt_labels=cur_gt[:, -1].long())
            else:
                iou3d = iou3d_nms_utils.boxes_iou3d_gpu(
                    cur_roi, cur_gt[:, 0:7])  # (M, N)
                max_overlaps, gt_assignment = torch.max(iou3d, dim=1)

            sampled_inds = self.subsample_rois(max_overlaps=max_overlaps)

            batch_rois[index] = cur_roi[sampled_inds]
            batch_roi_labels[index] = cur_roi_labels[sampled_inds]
            batch_roi_ious[index] = max_overlaps[sampled_inds]
            batch_roi_scores[index] = cur_roi_scores[sampled_inds]
            batch_gt_of_rois[index] = cur_gt[gt_assignment[sampled_inds]]

        return batch_rois, batch_gt_of_rois, batch_roi_ious, batch_roi_scores, batch_roi_labels
Exemple #6
0
    def assign_targets_single(self, anchors,
                              gt_boxes,
                              gt_classes,
                              matched_threshold=0.6,
                              unmatched_threshold=0.45
                              ):

        num_anchors = anchors.shape[0]
        num_gt = gt_boxes.shape[0]
        box_ndim = anchors.shape[1]

        labels = torch.ones((num_anchors,), dtype=torch.int32, device=anchors.device) * -1
        gt_ids = torch.ones((num_anchors,), dtype=torch.int32, device=anchors.device) * -1

        if len(gt_boxes) > 0 and anchors.shape[0] > 0:
            anchor_by_gt_overlap = iou3d_nms_utils.boxes_iou3d_gpu(anchors,
                                                                   gt_boxes) if self.match_height else box_utils.boxes3d_nearest_bev_iou(
                anchors, gt_boxes)
            anchor_to_gt_argmax = anchor_by_gt_overlap.argmax(dim=1)
            anchor_to_gt_max = anchor_by_gt_overlap[torch.arange(num_anchors),
                                                    anchor_to_gt_argmax]

            gt_to_anchor_argmax = anchor_by_gt_overlap.argmax(dim=0)
            gt_to_anchor_max = anchor_by_gt_overlap[
                gt_to_anchor_argmax,
                torch.arange(num_gt)]
            empty_gt_mask = gt_to_anchor_max == 0
            gt_to_anchor_max[empty_gt_mask] = -1
            anchors_with_max_overlap = torch.nonzero(
                anchor_by_gt_overlap == gt_to_anchor_max)[:, 0]

            gt_inds_force = anchor_to_gt_argmax[anchors_with_max_overlap]
            labels[anchors_with_max_overlap] = gt_classes[gt_inds_force]
            gt_ids[anchors_with_max_overlap] = gt_inds_force.int()

            pos_inds = anchor_to_gt_max >= matched_threshold
            gt_inds_over_thresh = anchor_to_gt_argmax[pos_inds]
            labels[pos_inds] = gt_classes[gt_inds_over_thresh]
            gt_ids[pos_inds] = gt_inds_over_thresh.int()
            bg_inds = torch.nonzero(anchor_to_gt_max < unmatched_threshold)[:, 0]
        else:
            bg_inds = torch.arange(num_anchors)

        fg_inds = torch.nonzero(labels > 0)[:, 0]

        if self.pos_fraction is not None:
            num_fg = int(self.pos_fraction * self.sample_size)
            if len(fg_inds) > num_fg:
                num_disabled = len(fg_inds) - num_fg
                disable_inds = torch.randperm(len(fg_inds))[:num_disabled]
                labels[disable_inds] = -1
                fg_inds = torch.nonzero(labels > 0)[:, 0]

            num_bg = self.sample_size - (labels > 0).sum()
            if len(bg_inds) > num_bg:
                enable_inds = bg_inds[torch.randint(0, len(bg_inds), size=(num_bg,))]
                labels[enable_inds] = 0
            bg_inds = torch.nonzero(labels == 0)[:, 0]
        else:
            if len(gt_boxes) == 0 or anchors.shape[0] == 0:
                labels[:] = 0
            else:
                labels[bg_inds] = 0
                labels[anchors_with_max_overlap] = gt_classes[gt_inds_force]

        bbox_targets = anchors.new_zeros((num_anchors, self.box_coder.code_size))
        if len(gt_boxes) > 0 and anchors.shape[0] > 0:
            fg_gt_boxes = gt_boxes[anchor_to_gt_argmax[fg_inds], :]
            fg_anchors = anchors[fg_inds, :]
            bbox_targets[fg_inds, :] = self.box_coder.encode_torch(fg_gt_boxes, fg_anchors)

        reg_weights = anchors.new_zeros((num_anchors,))

        if self.norm_by_num_examples:
            num_examples = (labels >= 0).sum()
            num_examples = num_examples if num_examples > 1.0 else 1.0
            reg_weights[labels > 0] = 1.0 / num_examples
        else:
            reg_weights[labels > 0] = 1.0

        ret_dict = {
            'box_cls_labels': labels,
            'box_reg_targets': bbox_targets,
            'reg_weights': reg_weights,
        }
        return ret_dict
Exemple #7
0
    def forward(self, x_in, gt_boxes):
        # x_in = batch_dict["spatial_features"]
        x = x_in
        ups = []
        ret_dict = {}
        for i in range(len(self.blocks)):
            x = self.blocks[i](x)

            stride = int(x_in.shape[2] / x.shape[2])
            ret_dict['spatial_features_%dx' % stride] = x

            ups.append(self.deblocks[i](x))

        if self._concat_input:
            ups.append(x_in)

        if len(ups) > 1:
            x = torch.cat(ups, dim=1)
        else:
            x = ups[0]
        if len(self.deblocks) > len(self.blocks):
            x = self.deblocks[-1](x)
        ret_dict['spatial_features_last'] = x

        box_preds = self.conv_box(x)
        cls_preds = self.conv_cls(x)
        # [N, C, y(H), x(W)]
        box_preds = box_preds.permute(0, 2, 3, 1).contiguous()
        cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous()
        ret_dict.update({
            'box_preds': box_preds,
            'cls_preds': cls_preds,
        })
        if self.config["use_direction_classifier"]:
            dir_pred = self.conv_dir_cls(x)
            ret_dict.update({"dir_preds": dir_pred.contiguous()})
        self.forward_ret_dict = ret_dict

        if self.training:
            targets_dict = self.get_assigner_target(gt_boxes=gt_boxes, )
            # 验证target
            batch_size = targets_dict["box_reg_targets"].shape[0]
            anchors = torch.cat([anchor for anchor in self.anchors], dim=-2)
            anchors = anchors.reshape(1, -1, 7).repeat(batch_size, 1, 1)
            box_reg_targets = targets_dict["box_reg_targets"]
            # box_reg_targets_np = box_reg_targets.cpu().numpy()
            # box_reg_targets_np = box_reg_targets_np[box_reg_targets_np!=0].reshape(batch_size,-1,7)
            box_gt_recover = self.box_coder.decode_torch(
                box_reg_targets, anchors)

            iou3d = iou3d_nms_utils.boxes_iou3d_gpu(box_gt_recover[0],
                                                    gt_boxes[0][..., :7])
            idx = (iou3d > 0.98).int()
            idx = torch.nonzero(idx)
            iou3d = iou3d[idx[:, 0], idx[:, 1]]
            box_gt_recover = box_gt_recover[0][idx[:, 0], :]
            ret_dict.update(targets_dict)
            self.forward_ret_dict.update(ret_dict)
            # loss,tb_dict = self.get_loss()

        rpn_cls_preds, rpn_box_preds = self.predict_box()
        ret_dict.update({
            "rpn_box_preds": rpn_box_preds,
            "rpn_cls_preds": rpn_cls_preds
        })
        self.forward_ret_dict.update(ret_dict)
        return ret_dict