Exemple #1
0
    def __call__(self, x):
        """ Returns a linearly interpolated value of the distribution at x.

            Parameters
            ----------
            x : array-like or float
                x-values for which you want to know the corresponding y-values
                of the distribution.

            Raises
            ------
            ValueError
                If x is outside the data range.
        """
        if self._x is None and isinstance(self._y, (float, np.float)):
            if isinstance(x, (list, tuple, np.ndarray)):
                return np.zeros(len(x)) + self._y
            else:
                return self._y

        if not allinrange(x, self._x_range):
            raise ValueError("x is outside data range.", {"x": x, "x_range": self._x_range})

        if self.hist:
            idx = np.searchsorted(self._edges[:-1], x)
            return self._y[idx]
        else:
            y = np.interp(x, self._x, self._y, left=np.nan, right=np.nan)
            return y
Exemple #2
0
    def lookup(self, x):
        """ Returns the probability from the cumulative distribution function 
            corresponding to the value x.

            Parameters
            ----------
            x : array-like or float
                The x-value must be in the data range.

            Returns
            -------
            prob : array-like or float
                The corresponding probability of the value.

            Raises
            ------
            ValueError
                If any element of x is not inside the data range.

            Example
            -------
            This method is useful is you need to truncate the distribution 
            before sampling. For example::

                import numpy as np
                import matplotlib.pyplot as plt
                x = np.linspace(0, 200, 200)
                y = np.exp(-((x - 50.0)/20)**2)
                dist = Distribution(x, y)
                p1 = dist.lookup(40.0)
                p2 = dist.lookup(80.0)
                draw = dist.sample(np.random.uniform(p1, p2, 10000))
                plt.hist(draw)

        """
        if not allinrange(x, self._x_range):
            raise ValueError("x is outside data range.", {"x": x, "x_range": self._x_range})

        if self.hist:
            idx = np.searchsorted(self._edges[:-1], x)
            return self._cdf[idx]
        else:
            prob = np.interp(x, self._x, self._cdf, left=np.nan, right=np.nan)
            if prob.size == 1:
                prob = prob.tolist()  # actually a float
            return prob
Exemple #3
0
    def sample(self, p):
        """ Returns the value corresponding to the probability from the cumulative
            distribution function.
            
            Parameters
            ----------
            p : array-like or float
                The probability value, must be between 0 and 1.
            
            Returns
            -------
            xval : array-like or float
                The corresponding x-value.
            
            Raises
            ------
            ValueError
                If p is outside the range [0, 1].
            
            Example
            -------
            Use this method to sample the distribution with randoms numbers. For
            example::
            
                import numpy as np
                import matplotlib.pyplot as plt
                x = np.linspace(0, 200, 200)
                y = np.exp(-((x - 50.0)/20)**2)
                dist = Distribution(x, y)
                drawn = dist.sample(np.random.uniform(0, 1, 10000))
                plt.hist(drawn)
        """
        if not allinrange(p, (0.0, 1.0)):
            raise ValueError("p is outside valid range.")

        if self.hist:
            idx = np.searchsorted(self._cdf, p)
            try:
                return self._x[idx]
            except IndexError:
                return self._x[-1]
        else:
            xval = np.interp(p, self._cdf, self._x, left=np.nan, right=np.nan)
            if xval.size == 1:
                xval = xval.tolist()  # actually a float
            return xval
Exemple #4
0
    def __call__(self, x):
        """ Returns a linearly interpolated value of the distribution at x.
            
            Parameters
            ----------
            x : array-like or float
                x-values for which you want to know the corresponding y-values
                of the distribution.
            
            Raises
            ------
            ValueError
                If x is outside the data range.
        """
        if not allinrange(x, self._x_range):
            raise ValueError("x is outside data range.")

        y = np.interp(x, self._x, self._y, left=np.nan, right=np.nan)
        return y
    def lookup(self, x):
        """ Returns the probability from the cumulative distribution function 
            corresponding to the value x.
        
            Parameters
            ----------
            x : array-like or float
                The x-value must be in the data range.
            
            Returns
            -------
            prob : array-like or float
                The corresponding probability of the value.

            Raises
            ------
            ValueError
                If any element of x is not inside the data range.
            
            Example
            -------
            This method is useful is you need to truncate the distribution 
            before sampling. For example::
            
                import numpy as np
                import matplotlib.pyplot as plt
                x = np.linspace(0, 200, 200)
                y = np.exp(-((x - 50.0)/20)**2)
                dist = Distribution(x, y)
                p1 = dist.lookup(40.0)
                p2 = dist.lookup(80.0)
                draw = dist.sample(np.random.uniform(p1, p2, 10000))
                plt.hist(draw)

        """
        if not allinrange(x, self._x_range):
            raise ValueError("x is outside data range.")
        
        prob = np.interp(x, self._x, self._cdf, left=np.nan, right=np.nan)
        if prob.size == 1:
            prob = prob.tolist()  # actually a float
        return prob
    def sample(self, p):
        """ Returns the value corresponding to the probability from the cumulative
            distribution function.
            
            Parameters
            ----------
            p : array-like or float
                The probability value, must be between 0 and 1.
            
            Returns
            -------
            xval : array-like or float
                The corresponding x-value.
            
            Raises
            ------
            ValueError
                If p is outside the range [0, 1].
            
            Example
            -------
            Use this method to sample the distribution with randoms numbers. For
            example::
            
                import numpy as np
                import matplotlib.pyplot as plt
                x = np.linspace(0, 200, 200)
                y = np.exp(-((x - 50.0)/20)**2)
                dist = Distribution(x, y)
                drawn = dist.sample(np.random.uniform(0, 1, 10000))
                plt.hist(drawn)
        """
        if not allinrange(p, (0.0, 1.0)):
            raise ValueError("p is outside valid range.")

        xval = np.interp(p, self._cdf, self._x, left=np.nan, right=np.nan)
        if xval.size == 1:
            xval = xval.tolist()  # actually a float
        return xval