Exemple #1
0
def create_user_similarity(from_user_id: str, to_user_id: str,
                           tdna_conf: float) -> bool:
    """
    to create a relationship called "USER-SIMILAR" between two User nodes with
    confidence score as a property for that relationship.

    Args:
     from_user_id (string), from-node's user id
     to_user_id   (string), to-node's user id
     tdna_conf     (float), confidence score of similarity between users

    Returns:
     boolean, representing whether the relationship got inserted or not.
    """

    matcher = py2neo.NodeMatcher(graph)
    from_node = matcher.match(USER_NODE_LABEL, user_id=from_user_id).first()
    to_node = matcher.match(USER_NODE_LABEL, user_id=to_user_id).first()

    user_similar = py2neo.Relationship(from_node,
                                       USER_SIMILAR_RELATIONSHIP,
                                       to_node,
                                       tdna_conf=tdna_conf)
    graph.create(user_similar)

    return graph.exists(user_similar)
Exemple #2
0
def create_tweet_impostor_similarity(impostor_user_id: str,
                                     unverified_tweet_id: str,
                                     tdna_conf: float) -> bool:
    """
    to create a relationship called "TWEET-SIMILAR" between a fraudulent
    not-verified Tweet with the impostor User among the network (thus Among Us) &
    confidence score as a property for that relationship.

    Args:
     impostor_user_id (string), impostor user id whose onboard pattern matched the tweet.
     unverified_tweet_id  (string), the unverified tweet, which was posted to dupe or fake.
     tdna_conf  (float), confidence score of similarity between impostor onboard & tweet patterns

    Returns:
     boolean, representing whether the relationship got inserted or not.
    """

    matcher = py2neo.NodeMatcher(graph)
    from_node = matcher.match(USER_NODE_LABEL,
                              user_id=impostor_user_id).first()
    to_node = matcher.match(TWEET_NODE_LABEL,
                            tweet_id=unverified_tweet_id).first()

    tweet_similar = py2neo.Relationship(from_node,
                                        TWEET_SIMILAR_RELATIONSHIP,
                                        to_node,
                                        tdna_conf=tdna_conf)
    graph.create(tweet_similar)

    return graph.exists(tweet_similar)
Exemple #3
0
def create_authentication_failed(from_user_id: str,
                                 unverified_tweet_id: str) -> bool:
    """
    to create a relationship called "UNVERIFIED" between a legit User 
    to an impostor tweet from their account.

    Args:
     from_user_id (string), person who tweeted, their user id
     unverified_tweet_id  (string), the unauthenticated tweet id, from that user id

    Returns:
     boolean, representing whether the relationship got inserted or not.
    """

    matcher = py2neo.NodeMatcher(graph)
    from_node = matcher.match(USER_NODE_LABEL, user_id=from_user_id).first()
    to_node = matcher.match(TWEET_NODE_LABEL,
                            tweet_id=unverified_tweet_id).first()

    failed_auth = py2neo.Relationship(
        from_node,
        UNVERIFIED_RELATIONSHIP,
        to_node,
    )
    graph.create(failed_auth)

    return graph.exists(failed_auth)
Exemple #4
0
def create_verified_similarity(from_user_id: str, verified_tweet_id: str,
                               tdna_conf: float) -> bool:
    """
    to create a relationship called "VERIFIED" between a legit User 
    to his typing DNA verified tweet & confidence score as a 
    property for that relationship.

    Args:
     from_user_id (string), person who tweeted, their user id
     verified_tweet_id   (string), the authenticated tweet id, from that user id
     tdna_conf     (float), confidence score of similarity between onboard & tweet pattern

    Returns:
     boolean, representing whether the relationship got inserted or not.
    """

    matcher = py2neo.NodeMatcher(graph)
    from_node = matcher.match(USER_NODE_LABEL, user_id=from_user_id).first()
    to_node = matcher.match(TWEET_NODE_LABEL,
                            tweet_id=verified_tweet_id).first()

    verified_similar = py2neo.Relationship(from_node,
                                           VERIFIED_RELATIONSHIP,
                                           to_node,
                                           tdna_conf=tdna_conf)
    graph.create(verified_similar)

    return graph.exists(verified_similar)
Exemple #5
0
def get_log_nodes(dataloader_name, image):
    return list(
        py2neo.NodeMatcher(get_graph()).match(
            "LoadingLog",
            dockerhub_image_name=image.tags[0].split(":")[0],
            dockerhub_image_tag=image.tags[0].split(":")[1],
            dockerhub_image_hash=image.id,
        )
    )
Exemple #6
0
def update_tweet(
    tweet_id: str,
    flagged: bool,
) -> bool:
    """
    takes relevant tweet details and updates it

    Args:
     tweet_id (string), tweet's id for reference
     flagged (boolean), indicating whether the tweet got flagged or not.

    Returns:
     boolean, confirming whether Tweet got updated or not.
    """

    matcher = py2neo.NodeMatcher(graph)
    tweet = matcher.match(TWEET_NODE_LABEL, tweet_id=tweet_id).first()

    tweet["flagged"] = flagged
    graph.push(tweet)

    return graph.exists(tweet)
Exemple #7
0
 def __init__(self, graph):
     self.graph = graph
     self.rship_matcher = pn.RelationshipMatcher(self.graph)
     self.node_matcher = pn.NodeMatcher(self.graph)
Exemple #8
0
def NameMain(city,category,day,time,hourstr,minstr):
    # accessing graph
    uri = "bolt://*****:*****@localhost:8000"
    numelements = 0
    graph = Graph(uri)
    matcher = py2neo.NodeMatcher(graph)
    busindex = 0

    # adding concession for half hours
    if minstr[0] == '3':
        hourstr = hourstr + '.5'

    # fetching from graph
    namecom = "MATCH (n:Business)-[:IN_CATEGORY]->(c:Category) WHERE (c.id=" + category + ") AND (n.state='AZ') AND (n.city=" + city + ") RETURN (n.name) ORDER BY n.stars desc,n.review_count desc"
    daycom = "MATCH (n:Business)-[:IN_CATEGORY]->(c:Category) WHERE (c.id=" + category + ") AND (n.state='AZ') AND (n.city=" + city + ") RETURN (n." + day + ") ORDER BY n.stars desc,n.review_count desc"
    addresscom = "MATCH (n:Business)-[:IN_CATEGORY]->(c:Category) WHERE (c.id=" + category + ") AND (n.state='AZ') AND (n.city=" + city + ") RETURN (n.address) ORDER BY n.stars desc,n.review_count desc"
    idcom = "MATCH (n:Business)-[:IN_CATEGORY]->(c:Category) WHERE (c.id=" + category + ") AND (n.state='AZ') AND (n.city=" + city + ")  RETURN (n.id) ORDER BY n.stars desc,n.review_count desc"
    starcom = "MATCH (n:Business)-[:IN_CATEGORY]->(c:Category) WHERE (c.id=" + category + ") AND (n.state='AZ') AND (n.city=" + city + ")  RETURN (n.stars) ORDER BY n.stars desc,n.review_count desc"
    countcom = "MATCH (n:Business)-[:IN_CATEGORY]->(c:Category) WHERE (c.id=" + category + ") AND (n.state='AZ') AND (n.city=" + city + ")  RETURN (n.review_count) ORDER BY n.stars desc,n.review_count desc"

    # converting from cursor object to a string object
    namestring = (graph.run(namecom)).data()
    daystring = (graph.run(daycom)).data()
    addressstring = (graph.run(addresscom)).data()
    idstring = (graph.run(idcom)).data()
    starstring = (graph.run(starcom)).data()
    countstring = (graph.run(countcom)).data()

    # to be filled with final sorted, relevant properties (final list)
    listname = {}
    listaddress = {}
    listday = {}
    listid = {}
    liststars = {}
    listcount = {}

    # temporary list used to update final lists
    tempname = {}
    tempid = {}
    tempday = {}
    tempaddress = {}
    tempstars = {}
    tempcount = {}

    # getting total number of elements
    for t in namestring:
        numelements += 1
    if (numelements < 1):
        return ("No restaurants found that match your criteria", "", "", "", "")

    # filling list with necessary string elements
    for x in range(numelements):
        tempname[x] = str(namestring[x])
        tempaddress[x] = str(addressstring[x])
        tempday[x] = str(daystring[x])
        tempid[x] = str(idstring[x])
        tempstars[x] = str(starstring[x])
        tempcount[x] = str(countstring[x])
    for x in range(numelements):

        lengthname = len(tempname[x])
        lengthaddress = len(tempaddress[x])
        lengthopen = len(tempday[x])
        lengthid = len(tempid[x])
        lengthstars = len(tempstars[x])
        lengthcount = len(tempcount[x])

        wordname = ''
        wordaddress = ''
        wordday = ''
        wordid = ''
        wordstars = ''
        wordcount = ''

        # Handling inconsistincies in dataset for days
        if (day == "Monday") or (day == "Sunday") or (day == "Friday"):
            for k in range(16, lengthopen - 2):
                wordday = wordday + str(tempday[x][k])
            listday[x] = wordday
        if (day == "Saturday") or (day == "Thursday"):
            for k in range(18, lengthopen - 2):
                wordday = wordday + str(tempday[x][k])
            listday[x] = wordday
        if (day == "Tuesday"):
            for k in range(18, lengthopen - 2):
                wordday = wordday + str(tempday[x][k])
            listday[x] = wordday
        if (day == "Wednesday"):
            for k in range(19, lengthopen - 2):
                wordday = wordday + str(tempday[x][k])
            listday[x] = wordday

        # filling lists
        for k in range(14, lengthname - 2):
            wordname = wordname + str(tempname[x][k])
        listname[x] = wordname
        for k in range(18, lengthaddress - 2):
            wordaddress = wordaddress + str(tempaddress[x][k])
        listaddress[x] = wordaddress
        for k in range(12, lengthid - 2):
            wordid = wordid + str(tempid[x][k])
        listid[x] = wordid
        for k in range(14, lengthstars - 3):
            wordstars = wordstars + str(tempstars[x][k])
        liststars[x] = wordstars
        for k in range(21, lengthcount - 1):
            wordcount = wordcount + str(tempcount[x][k])
        listcount[x] = wordcount

    busindex = getIndex(numelements, listday, hourstr)

    if (busindex == -10):

        return ("No restaurants found that match your criteria", "", "", "", "")
    # display of final relevant properties
    else:

        return (listname[busindex], listaddress[busindex], liststars[busindex], listid[busindex], listcount[busindex])
Exemple #9
0
def find_node(driver, node_type, **kwargs):
    matcher = py2neo.NodeMatcher(driver)
    found = matcher.match(node_type, **kwargs).first()

    return found
import json
import py2neo
from py2neo import Graph
import config as conf
import csv
import shutil, os
from pathlib import Path

uri = "{}://{}:{}@{}:{}".format(conf.PROTO, conf.USER, conf.PASSWORD, conf.HOSTNAME, conf.PORT)

graph = Graph(uri)
matcher = py2neo.NodeMatcher(graph) 

def select_business(state="AZ",cat='Restaurants'):
    bus_dict = graph.run("MATCH (business:Business)-[:IN_CATEGORY]->(c:Category) WHERE c.id in $categories RETURN business",parameters={'categories':cat}).data() 
    #bu = result[0]['business']['name']
    #Get a list of all bussiness using 'where' statement with the regex .*
    #bus_list= list(matcher.match("Business").where("_.name =~ '.*'"))
    bus_selected = [dict() for x in range(1)]
    for bus in bus_dict:
        if(bus['business']['state']==state):
            bus_selected.append(bus['business'])
    bus_selected.pop(0)
    return bus_selected
def clean_data():
    folder = Path("./")
    file = folder / "photo.json"
    with open(file) as f:
         # Import json data into an array of json objects
        data = [json.loads(line) for line in f] 
    dictlist = [dict() for x in range(1)]
Exemple #11
0
    def write(self, filename="model.xml"):
        """Gets all nodes and relationships with p > 0.5 and writes them to an XML file which can be used to generate the final model in ArchiMate"""

        # Create XML file skeleton
        network = ET.Element("network")
        properties = ET.Element("properties")
        # Add a list of host properties that map force is going to use
        property_addr = ET.Element("property")
        property_addr_name = ET.SubElement(property_addr, "name")
        property_addr_type = ET.SubElement(property_addr, "type")
        property_addr_name.text = "address"
        property_addr_type.text = "string"

        property_ip = ET.Element("property")
        property_ip_name = ET.SubElement(property_ip, "name")
        property_ip_type = ET.SubElement(property_ip, "type")
        property_ip_name.text = "ip"
        property_ip_type.text = "string"

        property_port = ET.Element("property")
        property_port_name = ET.SubElement(property_port, "name")
        property_port_type = ET.SubElement(property_port, "type")
        property_port_name.text = "port"
        property_port_type.text = "number"

        property_likelihood = ET.Element("property")
        property_likelihood_name = ET.SubElement(property_likelihood, "name")
        property_likelihood_type = ET.SubElement(property_likelihood, "type")
        property_likelihood_name.text = "likelihood"
        property_likelihood_type.text = "number"

        # Append all properties to property node
        properties.append(property_addr)
        properties.append(property_ip)
        properties.append(property_port)
        properties.append(property_likelihood)

        # Append property node to network
        network.append(properties)

        # Get all hosts with p > 0.5 using cypher query, hosts is a list of dicts
        nodematcher = neo.NodeMatcher(self.graph)
        hosts = nodematcher.match("Host", p__gt=0.5)

        # Get all connections with p > 0.5 and both start_node.p > 0.5 and end_node.p > 0.5
        relmatcher = neo.RelationshipMatcher(self.graph)
        rels = relmatcher.match(r_type="CONNECTED").where(
            "_.p > 0.5", "a.p > 0.5", "b.p > 0.5")

        # Iterate over all hosts and append XML nodes for each of them
        for h in hosts:
            host = ET.Element("host")
            name = ET.SubElement(host, "name")
            name.text = str(h["ip"])
            address = ET.SubElement(host, "address")
            # For the ArchiMate model does not allow colons in properties, therefore use underscores instead
            address.text = h["addr"].replace(":", "_")
            property_ip = ET.SubElement(host, "property")
            property_ip_name = ET.SubElement(property_ip, "name")
            property_ip_value = ET.SubElement(property_ip, "value")
            property_ip_name.text = "ip"
            property_ip_value.text = str(h["ip"])
            property_port = ET.SubElement(host, "property")
            property_port_name = ET.SubElement(property_port, "name")
            property_port_value = ET.SubElement(property_port, "value")
            property_port_name.text = "port"
            property_port_value.text = str(h["port"])
            property_likelihood = ET.SubElement(host, "property")
            property_likelihood_name = ET.SubElement(property_likelihood,
                                                     "name")
            property_likelihood_value = ET.SubElement(property_likelihood,
                                                      "value")
            property_likelihood_name.text = "likelihood"
            property_likelihood_value.text = str(round(h["p"], 2))
            # Append host node to network node
            network.append(host)

        # Now iterate over all "CONNECTED" relationships and add XML nodes
        for r in rels:
            rel = ET.Element("relationship")
            source = ET.SubElement(rel, "source")
            destination = ET.SubElement(rel, "destination")
            source.text = r.start_node["addr"].replace(":", "_")
            destination.text = r.end_node["addr"].replace(":", "_")
            property_likelihood = ET.SubElement(rel, "property")
            property_likelihood_name = ET.SubElement(property_likelihood,
                                                     "name")
            property_likelihood_value = ET.SubElement(property_likelihood,
                                                      "value")
            property_likelihood_name.text = "likelihood"
            property_likelihood_value.text = str(round(r["p"], 2))
            network.append(rel)

        tree = ET.ElementTree(network)
        tree.write(filename)