def get_free_gpus(): """ For an N gpu system, returns a list of N boolean values. The nth value will be True if no process was running on the nth gpu.""" # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly.""" warnings.warn(str_, RuntimeWarning) logger.warn(str_) return [] numDevices = py3nvml.nvmlDeviceGetCount() gpu_free = [False] * numDevices num_gpus = py3nvml.nvmlDeviceGetCount() for i in range(num_gpus): try: h = py3nvml.nvmlDeviceGetHandleByIndex(i) except: continue procs = try_get_info(py3nvml.nvmlDeviceGetComputeRunningProcesses, h, ['something']) if len(procs) == 0: gpu_free[i] = True return gpu_free
def test_nvidia(): # pip install py3nvml import py3nvml from py3nvml import py3nvml as nvml inspect(py3nvml.get_free_gpus()) nvml.nvmlInit() inspect(version=nvml.nvmlSystemGetDriverVersion()) inspect(count=nvml.nvmlDeviceGetCount()) for i in range(nvml.nvmlDeviceGetCount()): test_nvidia_device(i) nvml.nvmlShutdown()
def getCUDAEnvironment(): """ Get the CUDA runtime environment parameters (number of cards etc.). """ rdict = dict() rdict['first_available_device_index'] = None rdict['device_count'] = 0 try: nvml.nvmlInit() rdict['device_count'] = nvml.nvmlDeviceGetCount() except Exception: print( 'WARNING: At least one of (py3nvml.nvml, CUDA) is not available. Will continue without GPU.' ) return rdict for i in range(rdict['device_count']): memory_info = nvml.nvmlDeviceGetMemoryInfo( nvml.nvmlDeviceGetHandleByIndex(i)) memory_usage_percentage = memory_info.used / memory_info.total if memory_usage_percentage <= 0.1: rdict['first_available_device_index'] = i break nvml.nvmlShutdown() return rdict
def get_gpu_info_by_nvml(self) -> Dict: """Get GPU info using nvml""" gpu_info_list = [] driver_version = None try: nvmlInit() driver_version = nvmlSystemGetDriverVersion() deviceCount = nvmlDeviceGetCount() for i in range(deviceCount): handle = nvmlDeviceGetHandleByIndex(i) info = nvmlDeviceGetMemoryInfo(handle) gpu_info = {} gpu_info["memory_total"] = info.total gpu_info["memory_available"] = info.free gpu_info["name"] = nvmlDeviceGetName(handle) gpu_info_list.append(gpu_info) nvmlShutdown() except NVMLError as error: if not self.silent: self.logger.error( "Error fetching GPU information using nvml: %s", error) return None result = {"driver_version": driver_version, "devices": gpu_info_list} if 'CUDA_VISIBLE_DEVICES' in environ: result["cuda_visible"] = environ['CUDA_VISIBLE_DEVICES'] return result
def measure_gpu_usage(self): from py3nvml.py3nvml import nvmlInit, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, \ nvmlDeviceGetMemoryInfo, nvmlDeviceGetName, nvmlShutdown, NVMLError max_gpu_usage = [] gpu_name = [] try: nvmlInit() deviceCount = nvmlDeviceGetCount() max_gpu_usage = [0 for i in range(deviceCount)] gpu_name = [ nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)) for i in range(deviceCount) ] while True: for i in range(deviceCount): info = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(i)) max_gpu_usage[i] = max(max_gpu_usage[i], info.used / 1024**2) sleep(0.005) # 5ms if not self.keep_measuring: break nvmlShutdown() return [{ "device_id": i, "name": gpu_name[i], "max_used_MB": max_gpu_usage[i] } for i in range(deviceCount)] except NVMLError as error: if not self.silent: self.logger.error( "Error fetching GPU information using nvml: %s", error) return None
def get_device_count(self): """Get the compute capability of device. Return: count (int): count of device. """ return nvml.nvmlDeviceGetCount()
def read_top_card_memory_in_bytes(): # pylint: disable=no-member # pylint incorrectly detects that function nvmlDeviceGetMemoryInfo returns str return self.__nvml_get_or_else(lambda: [ nvmlDeviceGetMemoryInfo(nvmlDeviceGetHandleByIndex(card_index)) .total for card_index in range(nvmlDeviceGetCount()) ], default=0)
def get_device_handles(): """Get a list of NVML device handles, one per device. Can throw NVMLError. """ return [ pynvml.nvmlDeviceGetHandleByIndex(i) for i in range(pynvml.nvmlDeviceGetCount()) ]
def gpus(self): out = [] with nvml_manager(): if not pynvml: return out cpu_to_node = self.cpu_nodes() n_devices = pynvml.nvmlDeviceGetCount() for i in range(n_devices): handle = pynvml.nvmlDeviceGetHandleByIndex(i) out.append(GPU(handle, cpu_to_node)) return out
def __init__(self, report=None, devices=None, quiet=False, always_suffix=False, output=print, verbose_once=True): super(self.__class__, self).__init__() global nvml self.output = output if nvml is not None: try: nvml.nvmlInit() except (OSError, nvml.NVMLError_LibraryNotFound): # the python library might be installed, but not the drivers... nvml = None if nvml is None: if not quiet: self.output( "Could not load py3nvml, cannot report any nvidia device statistics." ) report = [] else: device_count = nvml.nvmlDeviceGetCount() if devices is None: devices = list(range(device_count)) else: devices = [ int(device) for device in devices if 0 <= int(device) < device_count ] self.devices = devices self.deviceHandles = [ nvml.nvmlDeviceGetHandleByIndex(device) for device in devices ] if not quiet: for n, handle in enumerate(self.deviceHandles): self.output("Collecting statistics for device #% 2d: %s" % (n, nvml.nvmlDeviceGetName(handle))) if report is None: report = ['temperature', 'utilization_gpu'] elif report == 'all': report = list(self.reportable_values.keys()) self.verbose_once = verbose_once self.report = report self.always_suffix = always_suffix
def gpu_info(): "Returns a tuple of (GPU ID, GPU Description, GPU % Utilization)" nvmlInit() deviceCount = nvmlDeviceGetCount() info = [] for i in range(0, deviceCount): handle = nvmlDeviceGetHandleByIndex(i) util = nvmlDeviceGetUtilizationRates(handle) desc = nvmlDeviceGetName(handle) info.append( (i, desc, util.gpu)) #['GPU %i - %s' % (i, desc)] = util.gpu return info
def get_gpu_info() -> Tuple[Optional[str], Optional[List[GpuInfo]]]: """ Get driver version and list of ``GpuInfo``, if available. """ try: nvml.nvmlInit() except nvml.NVMLError: # Not available. return None, None driver_version: str = nvml.nvmlSystemGetDriverVersion() gpus: List[GpuInfo] = [] device_count: int = nvml.nvmlDeviceGetCount() for i in range(device_count): handle = nvml.nvmlDeviceGetHandleByIndex(i) name = try_get_info(nvml.nvmlDeviceGetName, handle) fan_speed = try_get_info(nvml.nvmlDeviceGetFanSpeed, handle, default=0) temp = try_get_info( lambda h: nvml.nvmlDeviceGetTemperature(h, nvml. NVML_TEMPERATURE_GPU), handle, default=0, ) mem_info = try_get_info(nvml.nvmlDeviceGetMemoryInfo, handle) if mem_info: mem_used = mem_info.used >> 20 mem_total = mem_info.total >> 20 else: mem_used = 0 mem_total = 0 util = try_get_info(nvml.nvmlDeviceGetUtilizationRates, handle) if util: gpu_util = util.gpu else: gpu_util = 0 gpus.append( GpuInfo( id=i, name=name, mem_usage=mem_used, mem_capacity=mem_total, utilization=gpu_util, temp=temp, fan=fan_speed, )) nvml.nvmlShutdown() return driver_version, gpus
def measure_gpu_usage(self) -> Optional[List[Dict[str, Any]]]: from py3nvml.py3nvml import ( NVMLError, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo, nvmlDeviceGetName, nvmlInit, nvmlShutdown, ) max_gpu_usage = [] gpu_name = [] try: nvmlInit() device_count = nvmlDeviceGetCount() if not isinstance(device_count, int): logger.error( f"nvmlDeviceGetCount result is not integer: {device_count}" ) return None max_gpu_usage = [0 for i in range(device_count)] gpu_name = [ nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)) for i in range(device_count) ] while True: for i in range(device_count): info = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(i)) if isinstance(info, str): logger.error( f"nvmlDeviceGetMemoryInfo returns str: {info}") return None max_gpu_usage[i] = max(max_gpu_usage[i], info.used / 1024**2) sleep(0.005) # 5ms if not self.keep_measuring: break nvmlShutdown() return [{ "device_id": i, "name": gpu_name[i], "max_used_MB": max_gpu_usage[i], } for i in range(device_count)] except NVMLError as error: logger.error("Error fetching GPU information using nvml: %s", error) return None
def run_gpu_mem_counter(do_shutdown=False): # Sum used memory for all GPUs if not torch.cuda.is_available(): return 0 if do_shutdown: py3nvml.nvmlInit() devices = list(range(py3nvml.nvmlDeviceGetCount()) ) #if gpus_to_trace is None else gpus_to_trace gpu_mem = 0 for i in devices: handle = py3nvml.nvmlDeviceGetHandleByIndex(i) meminfo = py3nvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem += meminfo.used if do_shutdown: py3nvml.nvmlShutdown() return gpu_mem
def __init__(self): self.labels = ['gpu', 'name', 'driver'] self.driver = nv.nvmlSystemGetDriverVersion() self.n_gpu = nv.nvmlDeviceGetCount() self.hnds = [ nv.nvmlDeviceGetHandleByIndex(i) for i in range(self.n_gpu) ] self.args = [] for i, hnd in enumerate(self.hnds): args = OrderedDict() args['gpu'] = 'gpu%d' % i args['name'] = nv.nvmlDeviceGetName(hnd) args['driver'] = self.driver self.args.append(args)
def get_free_gpus(max_procs=0): """ Checks the number of processes running on your GPUs. Parameters ---------- max_procs : int Maximum number of procs allowed to run on a gpu for it to be considered 'available' Returns ------- availabilities : list(bool) List of length N for an N-gpu system. The nth value will be true, if the nth gpu had at most max_procs processes running on it. Set to 0 to look for gpus with no procs on it. Note ---- If function can't query the driver will return an empty list rather than raise an Exception. """ # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly.""" warnings.warn(str_, RuntimeWarning) logger.warning(str_) return [] num_gpus = py3nvml.nvmlDeviceGetCount() gpu_free = [False] * num_gpus for i in range(num_gpus): try: h = py3nvml.nvmlDeviceGetHandleByIndex(i) except: continue procs = try_get_info(py3nvml.nvmlDeviceGetComputeRunningProcesses, h, ['something']) if len(procs) <= max_procs: gpu_free[i] = True py3nvml.nvmlShutdown() return gpu_free
def _get_current_power(self, arrange_next=True): # return in kilo watt if self.gpu: num_gpus = nvmlDeviceGetCount() current_power = 0 for i in range(num_gpus): h = nvmlDeviceGetHandleByIndex(i) power = try_get_info(nvmlDeviceGetPowerUsage, h, "-1") current_power += power / 1000 if arrange_next: self.schedule.enter(self.interval, 1, self._get_current_power) else: pass else: current_power = 0 self.powers.append(current_power) return current_power
def gpustats(): import py3nvml.py3nvml as pynvml if '__gpuhandler__' not in globals(): globals()['__gpuhandler__'] = True pynvml.nvmlInit() usage = [] util = [] deviceCount = pynvml.nvmlDeviceGetCount() for i in range(deviceCount): handle = pynvml.nvmlDeviceGetHandleByIndex(i) info = pynvml.nvmlDeviceGetMemoryInfo(handle) usage.append(info.used / info.total) info = pynvml.nvmlDeviceGetUtilizationRates(handle) util.append(info.gpu / 100.) return {'maxmemusage': max(usage), 'maxutil': max(util)}
def __get_gpu_temps(): if utils.which('nvidia-smi') is not None: try: nvml.nvmlInit() except nvml.NVMLError as e: pass else: device_count = nvml.nvmlDeviceGetCount() print('\nGPU:') if device_count > 0: for i in range(device_count): handle = nvml.nvmlDeviceGetHandleByIndex(i) gpu_temp = nvml.nvmlDeviceGetTemperature(handle, 0) print(' GPU %(i)s: ${alignr}${color %(color)s}%(temp)s${color}°C' % { 'i': i, 'color': get_gpu_temps_color(gpu_temp), 'temp': gpu_temp }) nvml.nvmlShutdown()
def get_num_procs(): """ Gets the number of processes running on each gpu Returns ------- num_procs : list(int) Number of processes running on each gpu Note ---- If function can't query the driver will return an empty list rather than raise an Exception. Note ---- If function can't get the info from the gpu will return -1 in that gpu's place """ # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly.""" warnings.warn(str_, RuntimeWarning) logger.warning(str_) return [] num_gpus = py3nvml.nvmlDeviceGetCount() gpu_procs = [-1] * num_gpus for i in range(num_gpus): try: h = py3nvml.nvmlDeviceGetHandleByIndex(i) except: continue procs = try_get_info(py3nvml.nvmlDeviceGetComputeRunningProcesses, h, ['something']) gpu_procs[i] = len(procs) py3nvml.nvmlShutdown() return gpu_procs
def gpu_status(): try: py3nvml.nvmlInit() device_count = py3nvml.nvmlDeviceGetCount() devices = [] for i in range(device_count): gpu = {} handle = py3nvml.nvmlDeviceGetHandleByIndex(i) memory = _nmvl_call( partial(py3nvml.nvmlDeviceGetMemoryInfo, handle)) if memory: memory = round(memory.total * 1.0 / 2**30, 2) gpu['name'] = _nmvl_call(partial(py3nvml.nvmlDeviceGetName, handle)) gpu['clock'] = _nmvl_call( partial(py3nvml.nvmlDeviceGetApplicationsClock, handle, py3nvml.NVML_CLOCK_GRAPHICS)) gpu['clock_mem'] = _nmvl_call( partial(py3nvml.nvmlDeviceGetApplicationsClock, handle, py3nvml.NVML_CLOCK_MEM)) gpu['clock_max'] = _nmvl_call( partial(py3nvml.nvmlDeviceGetMaxClockInfo, handle, py3nvml.NVML_CLOCK_GRAPHICS)) gpu['clock_mem_max'] = _nmvl_call( partial(py3nvml.nvmlDeviceGetMaxClockInfo, handle, py3nvml.NVML_CLOCK_MEM)) gpu['memory'] = memory devices.append(gpu) nvidia = { 'driver_version': py3nvml.nvmlSystemGetDriverVersion(), 'devices': devices } return nvidia except Exception as e: return None
def get_device_procs(self, device_id: int) -> Optional[List[ProcInfo]]: """ List processes running on the GPU. Parameters ---------- device_id : int Device identifier Returns ------- Optional[List[ProcInfo]] List of ProcInfo named tuples (name, pid, mem fields) Raises ------ RuntimeError In case of py3nvml failure. """ py3nvml.nvmlInit() dev_count = py3nvml.nvmlDeviceGetCount() # type: int if not (0 <= device_id < dev_count): raise RuntimeError('Failed to query GPU with nvml') handle = py3nvml.nvmlDeviceGetHandleByIndex(device_id) result = [] try: for proc in py3nvml.nvmlDeviceGetComputeRunningProcesses(handle): try: name = str(py3nvml.nvmlSystemGetProcessName(proc.pid)) except py3nvml.NVMLError as err: if (err.value == py3nvml.NVML_ERROR_NOT_FOUND): # exited? continue raise mem = proc.usedGpuMemory / 1024 / 1024 result.append(ProcInfo(name, proc.pid, mem)) finally: py3nvml.nvmlShutdown() return result
def get_gpu_info() -> Optional[List[Dict[str, Any]]]: from py3nvml.py3nvml import ( NVMLError, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo, nvmlDeviceGetName, nvmlInit, nvmlShutdown, ) try: nvmlInit() result = [] device_count = nvmlDeviceGetCount() if not isinstance(device_count, int): return None for i in range(device_count): info = nvmlDeviceGetMemoryInfo(nvmlDeviceGetHandleByIndex(i)) if isinstance(info, str): return None result.append({ "id": i, "name": nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)), "total": info.total, "free": info.free, "used": info.used, }) nvmlShutdown() return result except NVMLError as error: print("Error fetching GPU information using nvml: %s", error) return None
def _get_gpu_info(): pynvml.nvmlInit() deviceCount = pynvml.nvmlDeviceGetCount() all_info = [] for i in range(0, deviceCount): gpu = pynvml.nvmlDeviceGetHandleByIndex(i) dimensions = {} dimensions.update(Nvidia._get_driver_version()) dimensions.update(Nvidia._get_device_uuid(gpu)) dimensions.update(Nvidia._get_info_rom_image_version(gpu)) dimensions.update(Nvidia._get_device_power_state(gpu)) dimensions.update(Nvidia._get_device_vbios_version(gpu)) measurements = {} measurements.update(Nvidia._get_fan_speed_percent(gpu)) measurements.update(Nvidia._get_framebuffer_memory_stats(gpu)) measurements.update(Nvidia._get_bar1_memory_stats(gpu)) measurements.update(Nvidia._get_utilisation_stats(gpu)) measurements.update(Nvidia._get_device_temperature(gpu)) measurements.update(Nvidia._get_device_shutdown_temp(gpu)) measurements.update(Nvidia._get_device_slowdown_temp(gpu)) measurements.update(Nvidia._get_power_usage_watts(gpu)) measurements.update(Nvidia._get_power_limit_watts(gpu)) measurements.update(Nvidia._get_clock_info(gpu)) measurements.update(Nvidia._get_clock_max_info(gpu)) gpu_name = "{}_{}".format( Nvidia._get_device_name(gpu).get('name'), Nvidia._get_device_serial(gpu).get('serial')) gpu_info = { 'name': gpu_name, 'dimensions': dimensions, 'measurements': measurements } all_info.append(gpu_info) pynvml.nvmlShutdown() return all_info
def _torch_gpu_index_to_nvml_handle(index=None): """Convert the GPU index from torch to an NVML handle. With this function, we are sure to obtain the correct handle for the GPU used by pytorch. """ if index is None: index = torch.cuda.current_device() device_count = nvmlDeviceGetCount() device_orders = os.environ.get(env_cuda_dev_order) if device_count > 1 and (device_orders is None or device_orders != expected_dev_order): warnings.warn( "The environment variable {} should be set with value {}".format( env_cuda_dev_order, expected_dev_order)) warnings.warn("GPU statistics can be wrong") devices_by_bus_id = [] for nvml_device_index in range(device_count): handle = nvmlDeviceGetHandleByIndex(nvml_device_index) pci_info = nvmlDeviceGetPciInfo(handle) devices_by_bus_id.append((pci_info.bus, handle)) # sort by bus id and keep only the handles devices_by_bus_id = [dev[1] for dev in sorted(devices_by_bus_id)] visible_devices = os.environ.get(env_cuda_visible_devs) if visible_devices is None: available_device_handles = devices_by_bus_id else: available_device_handles = [ devices_by_bus_id[int(d)] for d in visible_devices.split(",") ] return available_device_handles[index]
def grab_gpus(num_gpus=1, gpu_select=None, gpu_fraction=1.0): """ Checks for gpu availability and sets CUDA_VISIBLE_DEVICES as such. Note that this function does not do anything to 'reserve' gpus, it only limits what GPUS your program can see by altering the CUDA_VISIBLE_DEVICES variable. Other programs can still come along and snatch your gpu. This function is more about preventing **you** from stealing someone else's GPU. If more than 1 GPU is requested but the full amount are available, then it will set the CUDA_VISIBLE_DEVICES variable to see all the available GPUs. A warning is generated in this case. If one or more GPUs were requested and none were available, a Warning will be raised. Before raising it, the CUDA_VISIBLE_DEVICES will be set to a blank string. This means the calling function can ignore this warning and proceed if it chooses to only use the CPU, and it should still be protected against putting processes on a busy GPU. You can call this function with num_gpus=0 to blank out the CUDA_VISIBLE_DEVICES environment variable. Parameters ---------- num_gpus : int How many gpus your job needs (optional) gpu_select : iterable A single int or an iterable of ints indicating gpu numbers to search through. If left blank, will search through all gpus. gpu_fraction : float The fractional of a gpu memory that must be free for the script to see the gpu as free. Defaults to 1. Useful if someone has grabbed a tiny amount of memory on a gpu but isn't using it. Returns ------- success : int Number of gpus 'grabbed' Raises ------ RuntimeWarning If couldn't connect with NVIDIA drivers. If 1 or more gpus were requested and none were available. ValueError If the gpu_select option was not understood (can fix by leaving this field blank, providing an int or an iterable of ints). """ # Set the visible devices to blank. os.environ['CUDA_VISIBLE_DEVICES'] = "" if num_gpus == 0: return 0 # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly. Proceeding on cpu only...""" warnings.warn(str_, RuntimeWarning) logger.warn(str_) return 0 numDevices = py3nvml.nvmlDeviceGetCount() gpu_free = [False] * numDevices # Flag which gpus we can check if gpu_select is None: gpu_check = [True] * 8 else: gpu_check = [False] * 8 try: gpu_check[gpu_select] = True except TypeError: try: for i in gpu_select: gpu_check[i] = True except: raise ValueError( '''Please provide an int or an iterable of ints for gpu_select''') # Print out GPU device info. Useful for debugging. for i in range(numDevices): # If the gpu was specified, examine it if not gpu_check[i]: continue handle = py3nvml.nvmlDeviceGetHandleByIndex(i) info = py3nvml.nvmlDeviceGetMemoryInfo(handle) str_ = "GPU {}:\t".format(i) + \ "Used Mem: {:>6}MB\t".format(info.used/(1024*1024)) + \ "Total Mem: {:>6}MB".format(info.total/(1024*1024)) logger.debug(str_) # Now check if any devices are suitable for i in range(numDevices): # If the gpu was specified, examine it if not gpu_check[i]: continue handle = py3nvml.nvmlDeviceGetHandleByIndex(i) info = py3nvml.nvmlDeviceGetMemoryInfo(handle) # Sometimes GPU has a few MB used when it is actually free if (info.free + 10) / info.total >= gpu_fraction: gpu_free[i] = True else: logger.info('GPU {} has processes on it. Skipping.'.format(i)) py3nvml.nvmlShutdown() # Now check whether we can create the session if sum(gpu_free) == 0: warnings.warn("Could not find enough GPUs for your job", RuntimeWarning) logger.warn(str_) return 0 else: if sum(gpu_free) >= num_gpus: # only use the first num_gpus gpus. Hide the rest from greedy # tensorflow available_gpus = [i for i, x in enumerate(gpu_free) if x] use_gpus = ','.join(list( str(s) for s in available_gpus[:num_gpus])) logger.debug('{} Gpus found free'.format(sum(gpu_free))) logger.info('Using {}'.format(use_gpus)) os.environ['CUDA_VISIBLE_DEVICES'] = use_gpus return num_gpus else: # use everything we can. s = "Only {} GPUs found but {}".format(sum(gpu_free), num_gpus) + \ "requested. Allocating these and continuing." warnings.warn(s, RuntimeWarning) logger.warn(s) available_gpus = [i for i, x in enumerate(gpu_free) if x] use_gpus = ','.join(list(str(s) for s in available_gpus)) logger.debug('{} Gpus found free'.format(sum(gpu_free))) logger.info('Using {}'.format(use_gpus)) os.environ['CUDA_VISIBLE_DEVICES'] = use_gpus return sum(gpu_free)
def start_memory_tracing( modules_to_trace: Optional[Union[str, Iterable[str]]] = None, modules_not_to_trace: Optional[Union[str, Iterable[str]]] = None, events_to_trace: str = "line", gpus_to_trace: Optional[List[int]] = None, ) -> MemoryTrace: """ Setup line-by-line tracing to record rss mem (RAM) at each line of a module or sub-module. See `./benchmark.py` for usage examples. Current memory consumption is returned using psutil and in particular is the RSS memory "Resident Set Size” (the non-swapped physical memory the process is using). See https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info Args: - `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or 'transformers.modeling_gpt2') - `modules_not_to_trace`: (None, string, list/tuple of string) if None, no module is avoided if string or list of strings: events from the listed module/sub-module will not be recorded (e.g. 'torch') - `events_to_trace`: string or list of string of events to be recorded (see official python doc for `sys.settrace` for the list of events) default to line - `gpus_to_trace`: (optional list, default None) list of GPUs to trace. Default to tracing all GPUs Return: - `memory_trace` is a list of `UsedMemoryState` for each event (default each line of the traced script). - `UsedMemoryState` are named tuples with the following fields: - 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file, location in current file) - 'cpu_memory': CPU RSS memory state *before* executing the line - 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if provided) `Frame` is a namedtuple used by `UsedMemoryState` to list the current frame state. `Frame` has the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script """ if is_psutil_available(): process = psutil.Process(os.getpid()) else: logger.warning( "Psutil not installed, we won't log CPU memory usage. " "Install psutil (pip install psutil) to use CPU memory tracing.") process = None if is_py3nvml_available(): try: nvml.nvmlInit() devices = list(range(nvml.nvmlDeviceGetCount()) ) if gpus_to_trace is None else gpus_to_trace nvml.nvmlShutdown() except (OSError, nvml.NVMLError): logger.warning("Error while initializing comunication with GPU. " "We won't perform GPU memory tracing.") log_gpu = False else: log_gpu = is_torch_available() or is_tf_available() else: logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to use GPU memory tracing.") log_gpu = False memory_trace = [] def traceit(frame, event, args): """ Tracing method executed before running each line in a module or sub-module Record memory allocated in a list with debugging information """ global _is_memory_tracing_enabled if not _is_memory_tracing_enabled: return traceit # Filter events if events_to_trace is not None: if isinstance(events_to_trace, str) and event != events_to_trace: return traceit elif isinstance(events_to_trace, (list, tuple)) and event not in events_to_trace: return traceit if "__name__" not in frame.f_globals: return traceit # Filter modules name = frame.f_globals["__name__"] if not isinstance(name, str): return traceit else: # Filter whitelist of modules to trace if modules_to_trace is not None: if isinstance(modules_to_trace, str) and modules_to_trace not in name: return traceit elif isinstance(modules_to_trace, (list, tuple)) and all( m not in name for m in modules_to_trace): return traceit # Filter blacklist of modules not to trace if modules_not_to_trace is not None: if isinstance(modules_not_to_trace, str) and modules_not_to_trace in name: return traceit elif isinstance(modules_not_to_trace, (list, tuple)) and any( m in name for m in modules_not_to_trace): return traceit # Record current tracing state (file, location in file...) lineno = frame.f_lineno filename = frame.f_globals["__file__"] if filename.endswith(".pyc") or filename.endswith(".pyo"): filename = filename[:-1] line = linecache.getline(filename, lineno).rstrip() traced_state = Frame(filename, name, lineno, event, line) # Record current memory state (rss memory) and compute difference with previous memory state cpu_mem = 0 if process is not None: mem = process.memory_info() cpu_mem = mem.rss gpu_mem = 0 if log_gpu: # Clear GPU caches if is_torch_available(): torch_empty_cache() if is_tf_available(): tf_context.context()._clear_caches( ) # See https://github.com/tensorflow/tensorflow/issues/20218#issuecomment-416771802 # Sum used memory for all GPUs nvml.nvmlInit() for i in devices: handle = nvml.nvmlDeviceGetHandleByIndex(i) meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem += meminfo.used nvml.nvmlShutdown() mem_state = UsedMemoryState(traced_state, cpu_mem, gpu_mem) memory_trace.append(mem_state) return traceit sys.settrace(traceit) global _is_memory_tracing_enabled _is_memory_tracing_enabled = True return memory_trace
def new_query(): """Query the information of all the GPUs on local machine""" N.nvmlInit() def get_gpu_info(handle): """Get one GPU information specified by nvml handle""" def get_process_info(nv_process): """Get the process information of specific pid""" process = {} ps_process = psutil.Process(pid=nv_process.pid) process['username'] = ps_process.username() # cmdline returns full path; as in `ps -o comm`, get short cmdnames. _cmdline = ps_process.cmdline() if not _cmdline: # sometimes, zombie or unknown (e.g. [kworker/8:2H]) process['command'] = '?' else: process['command'] = os.path.basename(_cmdline[0]) # Bytes to MBytes process['gpu_memory_usage'] = int(nv_process.usedGpuMemory / 1024 / 1024) process['pid'] = nv_process.pid return process def _decode(b): if isinstance(b, bytes): return b.decode() # for python3, to unicode return b name = _decode(N.nvmlDeviceGetName(handle)) uuid = _decode(N.nvmlDeviceGetUUID(handle)) try: temperature = N.nvmlDeviceGetTemperature(handle, N.NVML_TEMPERATURE_GPU) except N.NVMLError: temperature = None # Not supported try: memory = N.nvmlDeviceGetMemoryInfo(handle) # in Bytes except N.NVMLError: memory = None # Not supported try: utilization = N.nvmlDeviceGetUtilizationRates(handle) except N.NVMLError: utilization = None # Not supported try: power = N.nvmlDeviceGetPowerUsage(handle) except: power = None try: power_limit = N.nvmlDeviceGetEnforcedPowerLimit(handle) except: power_limit = None processes = [] try: nv_comp_processes = N.nvmlDeviceGetComputeRunningProcesses(handle) except N.NVMLError: nv_comp_processes = None # Not supported try: nv_graphics_processes = N.nvmlDeviceGetGraphicsRunningProcesses(handle) except N.NVMLError: nv_graphics_processes = None # Not supported if nv_comp_processes is None and nv_graphics_processes is None: processes = None # Not supported (in both cases) else: nv_comp_processes = nv_comp_processes or [] nv_graphics_processes = nv_graphics_processes or [] for nv_process in (nv_comp_processes + nv_graphics_processes): # TODO: could be more information such as system memory usage, # CPU percentage, create time etc. try: process = get_process_info(nv_process) processes.append(process) except psutil.NoSuchProcess: # TODO: add some reminder for NVML broken context # e.g. nvidia-smi reset or reboot the system pass index = N.nvmlDeviceGetIndex(handle) gpu_info = { 'index': index, 'uuid': uuid, 'name': name, 'temperature.gpu': temperature, 'utilization.gpu': utilization.gpu if utilization else None, 'power.draw': int(power / 1000) if power is not None else None, 'enforced.power.limit': int(power_limit / 1000) if power_limit is not None else None, # Convert bytes into MBytes 'memory.used': int(memory.used / 1024 / 1024) if memory else None, 'memory.total': int(memory.total / 1024 / 1024) if memory else None, 'processes': processes, } return gpu_info # 1. get the list of gpu and status gpu_list = {} device_count = N.nvmlDeviceGetCount() for index in range(device_count): handle = N.nvmlDeviceGetHandleByIndex(index) gpu_info = get_gpu_info(handle) # gpu_stat = GPUStat(gpu_info) gpu_list[index] = gpu_info N.nvmlShutdown() return gpu_list
def get_stats(self): """ Get system statistics and assign to `self` """ memory_usage = psutil.virtual_memory() disk_usage = psutil.disk_usage('/') # net = psutil.net_io_counters() system = { # CPU utilization percent(can be over 100%) 'cpu': round10e5(self._process.cpu_percent(0.0)), # Whole system memory usage # 'memory_used': round10e5(memory_usage.used / 1024 / 1024), 'memory_percent': round10e5(memory_usage.used * 100 / memory_usage.total), # Get the portion of memory occupied by a process # 'p_memory_rss': round10e5(self._process.memory_info().rss # / 1024 / 1024), 'p_memory_percent': round10e5(self._process.memory_percent()), # Disk usage # 'disk_used': round10e5(disk_usage.used / 1024 / 1024), 'disk_percent': round10e5(disk_usage.percent), } # Collect GPU statistics gpus = [] try: gpu_device_count = nvml.nvmlDeviceGetCount() for i in range(gpu_device_count): handle = nvml.nvmlDeviceGetHandleByIndex(i) nvml_tmp = nvml.NVML_TEMPERATURE_GPU # Get device memory and temperature util = nvml.nvmlDeviceGetUtilizationRates(handle) memory = nvml.nvmlDeviceGetMemoryInfo(handle) temp = nvml.nvmlDeviceGetTemperature(handle, nvml_tmp) # Compute power usage in watts and percent power_watts = nvml.nvmlDeviceGetPowerUsage(handle) / 1000 power_cap = nvml.nvmlDeviceGetEnforcedPowerLimit(handle) power_cap_watts = power_cap / 1000 power_watts / power_cap_watts * 100 gpus.append({ # GPU utilization percent 'gpu': round10e5(util.gpu), # Device memory usage # 'memory_used': round10e5(memory.used / 1024 / 1024), 'gpu_memory_percent': round10e5(memory.used * 100 / memory.total), # Power usage in watts and percent 'gpu_power_watts': round10e5(power_watts), # 'power_percent': round10e5(power_usage), # Device temperature 'gpu_temp': round10e5(temp), }) except Exception: pass return system, gpus
def __init__(self): num_gpus = py3nvml.nvmlDeviceGetCount() self.gpus = [GpuInfo(i) for i in range(num_gpus)]