def test_functions(self): filename = pyCGM2.TEST_DATA_PATH + "LowLevel\\IO\\Hånnibøl_c3d\\gait1.c3d" acq = btkTools.smartReader(filename, translators=None) btkTools.GetMarkerNames(acq) btkTools.findNearestMarker(acq, 0, "LASI") btkTools.GetAnalogNames(acq) btkTools.isGap(acq, "LASI") btkTools.findMarkerGap(acq) btkTools.isPointExist(acq, "LASI") btkTools.isPointsExist(acq, ["LASI", "RASI"]) btkTools.clearPoints(acq, ["LASI", "RASI"]) btkTools.checkFirstAndLastFrame(acq, "LASI") btkTools.isGap_inAcq(acq, ["LASI", "RASI"]) btkTools.findValidFrames(acq, ["LASI", "RASI"]) btkTools.checkMultipleSubject(acq) btkTools.checkMarkers(acq, ["LASI", "RASI"]) btkTools.clearEvents(acq, ["Foot Strike"]) btkTools.modifyEventSubject(acq, "Hän") btkTools.modifySubject(acq, "Han") btkTools.getVisibleMarkersAtFrame(acq, ["LASI", "RASI"], 0) btkTools.isAnalogExist(acq, "emg-Hän") btkTools.createZeros(acq, ["LASI", "RASI"]) btkTools.constructEmptyMarker(acq, "zéros", desc="Hän") btkTools.getStartEndEvents(acq, "Left") btkTools.changeSubjectName(acq, "Hän") btkTools.smartGetMetadata(acq, "SUBJECTS", "USED") btkTools.smartSetMetadata(acq, "SUBJECTS", "USED", 0, "Hän")
def detect(self, acq): """ """ ff = acq.GetFirstFrame() if btkTools.isPointsExist( acq, ["LPSI", "RPSI", "LHEE", "LTOE", "RHEE", "RTOE"]): pfp = progressionFrame.PelvisProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acq, pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] longAxisIndex = 0 if progressionAxis == "X" else 1 sacrum = (acq.GetPoint("LPSI").GetValues() + acq.GetPoint("RPSI").GetValues()) / 2.0 #Left heel_left = acq.GetPoint("LHEE").GetValues() toe_left = acq.GetPoint("LTOE").GetValues() diffHeel_left = heel_left - sacrum diffToe_left = toe_left - sacrum #Right heel_right = acq.GetPoint("RHEE").GetValues() toe_right = acq.GetPoint("RTOE").GetValues() diffHeel_right = heel_right - sacrum diffToe_right = toe_right - sacrum if forwardProgression: indexes_fs_left = detect_peaks.detect_peaks( diffHeel_left[:, longAxisIndex]) + ff indexes_fo_left = detect_peaks.detect_peaks( -diffToe_left[:, longAxisIndex]) + ff else: indexes_fs_left = detect_peaks.detect_peaks( -diffHeel_left[:, longAxisIndex]) + ff indexes_fo_left = detect_peaks.detect_peaks( diffToe_left[:, longAxisIndex]) + ff if forwardProgression: indexes_fs_right = detect_peaks.detect_peaks( diffHeel_right[:, longAxisIndex]) + ff indexes_fo_right = detect_peaks.detect_peaks( -diffToe_right[:, longAxisIndex]) + ff else: indexes_fs_right = detect_peaks.detect_peaks( -diffHeel_right[:, longAxisIndex]) + ff indexes_fo_right = detect_peaks.detect_peaks( diffToe_right[:, longAxisIndex]) + ff return indexes_fs_left + self.footStrikeOffset, indexes_fo_left + self.footOffOffset, indexes_fs_right + self.footStrikeOffset, indexes_fo_right + self.footOffOffset else: logging.error( "[pyCGM2]: Zeni event detector impossible to run. Pelvic LPSI-RPSI or foot markers(HEE or TOE) are missing " ) return 0
def fitting(model,DATA_PATH, reconstructFilenameLabelled, translators, markerDiameter, pointSuffix, mfpa, momentProjection,**kwargs): """ Fitting of the CGM2.1 :param model [str]: pyCGM2 model previously calibrated :param DATA_PATH [str]: path to your data :param reconstructFilenameLabelled [string list]: c3d files :param translators [dict]: translators to apply :param mfpa [str]: manual force plate assignement :param markerDiameter [double]: marker diameter (mm) :param pointSuffix [str]: suffix to add to model outputs :param momentProjection [str]: Coordinate system in which joint moment is expressed """ detectAnomaly = False if "anomalyException" in kwargs.keys(): anomalyException = kwargs["anomalyException"] else: anomalyException=False # --------------------------ACQUISITION ------------------------------------ # --- btk acquisition ---- if "forceBtkAcq" in kwargs.keys(): acqGait = kwargs["forceBtkAcq"] else: acqGait = btkTools.smartReader((DATA_PATH + reconstructFilenameLabelled)) btkTools.checkMultipleSubject(acqGait) if btkTools.isPointExist(acqGait,"SACR"): translators["LPSI"] = "SACR" translators["RPSI"] = "SACR" LOGGER.logger.info("[pyCGM2] Sacrum marker detected") acqGait = btkTools.applyTranslators(acqGait,translators) trackingMarkers = cgm.CGM1.LOWERLIMB_TRACKING_MARKERS + cgm.CGM1.THORAX_TRACKING_MARKERS+ cgm.CGM1.UPPERLIMB_TRACKING_MARKERS actual_trackingMarkers,phatoms_trackingMarkers = btkTools.createPhantoms(acqGait, trackingMarkers) vff,vlf = btkTools.getFrameBoundaries(acqGait,actual_trackingMarkers) if "frameInit" in kwargs.keys() and kwargs["frameInit"] is not None: vff = kwargs["frameInit"] LOGGER.logger.info("[pyCGM2] first frame forced to frame [%s]"%(vff)) if "frameEnd" in kwargs.keys() and kwargs["frameEnd"] is not None: vlf = kwargs["frameEnd"] LOGGER.logger.info("[pyCGM2] end frame forced to frame [%s]"%(vlf)) flag = btkTools.getValidFrames(acqGait,actual_trackingMarkers,frameBounds=[vff,vlf]) LOGGER.logger.info("[pyCGM2] Computation from frame [%s] to frame [%s]"%(vff,vlf)) # --------------------ANOMALY------------------------------ for marker in actual_trackingMarkers: if marker not in model.getStaticTrackingMarkers(): LOGGER.logger.warning("[pyCGM2-Anomaly] marker [%s] - not used during static calibration - wrong kinematic for the segment attached to this marker. "%(marker)) # --marker presence markersets = [cgm.CGM1.LOWERLIMB_TRACKING_MARKERS, cgm.CGM1.THORAX_TRACKING_MARKERS, cgm.CGM1.UPPERLIMB_TRACKING_MARKERS] for markerset in markersets: ipdp = InspectorProcedure.MarkerPresenceDetectionProcedure( markerset) idf = InspectorFilter.InspectorFilter(acqGait,reconstructFilenameLabelled,ipdp) inspector = idf.run() # --marker outliers if inspector["In"] !=[]: madp = AnomalyDetectionProcedure.MarkerAnomalyDetectionRollingProcedure( inspector["In"], plot=False, window=5,threshold = 3) adf = AnomalyFilter.AnomalyDetectionFilter(acqGait,reconstructFilenameLabelled,madp, frameRange=[vff,vlf]) anomaly = adf.run() anomalyIndexes = anomaly["Output"] if anomaly["ErrorState"]: detectAnomaly = True if btkTools.checkForcePlateExist(acqGait): afpp = AnomalyDetectionProcedure.ForcePlateAnomalyProcedure() adf = AnomalyFilter.AnomalyDetectionFilter(acqGait,reconstructFilenameLabelled,afpp, frameRange=[vff,vlf]) anomaly = adf.run() if anomaly["ErrorState"]: detectAnomaly = True if detectAnomaly and anomalyException: raise Exception ("Anomalies has been detected - Check Warning message of the log file") # --------------------MODELLING------------------------------ # filtering # ----------------------- if "fc_lowPass_marker" in kwargs.keys() and kwargs["fc_lowPass_marker"]!=0 : fc = kwargs["fc_lowPass_marker"] order = 4 if "order_lowPass_marker" in kwargs.keys(): order = kwargs["order_lowPass_marker"] signal_processing.markerFiltering(acqGait,trackingMarkers,order=order, fc =fc) if "fc_lowPass_forcePlate" in kwargs.keys() and kwargs["fc_lowPass_forcePlate"]!=0 : fc = kwargs["fc_lowPass_forcePlate"] order = 4 if "order_lowPass_forcePlate" in kwargs.keys(): order = kwargs["order_lowPass_forcePlate"] signal_processing.forcePlateFiltering(acqGait,order=order, fc =fc) scp=modelFilters.StaticCalibrationProcedure(model) # ---Motion filter---- modMotion=modelFilters.ModelMotionFilter(scp,acqGait,model,enums.motionMethod.Determinist, markerDiameter=markerDiameter) modMotion.compute() progressionFlag = False if btkTools.isPointExist(acqGait, 'LHEE',ignorePhantom=False) or btkTools.isPointExist(acqGait, 'RHEE',ignorePhantom=False): pfp = progressionFrame.PointProgressionFrameProcedure(marker="LHEE") \ if btkTools.isPointExist(acqGait, 'LHEE',ignorePhantom=False) \ else progressionFrame.PointProgressionFrameProcedure(marker="RHEE") pff = progressionFrame.ProgressionFrameFilter(acqGait,pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] progressionFlag = True elif btkTools.isPointsExist(acqGait, ['LASI', 'RASI', 'RPSI', 'LPSI'],ignorePhantom=False) and not progressionFlag: LOGGER.logger.info("[pyCGM2] - progression axis detected from Pelvic markers ") pfp = progressionFrame.PelvisProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqGait,pfp) pff.compute() globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] progressionFlag = True elif btkTools.isPointsExist(acqGait, ['C7', 'T10', 'CLAV', 'STRN'],ignorePhantom=False) and not progressionFlag: LOGGER.logger.info("[pyCGM2] - progression axis detected from Thoracic markers ") pfp = progressionFrame.ThoraxProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqGait,pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] else: globalFrame = "XYZ" progressionAxis = "X" forwardProgression = True LOGGER.logger.error("[pyCGM2] - impossible to detect progression axis - neither pelvic nor thoracic markers are present. Progression set to +X by default ") if "displayCoordinateSystem" in kwargs.keys() and kwargs["displayCoordinateSystem"]: csp = modelFilters.ModelCoordinateSystemProcedure(model) csdf = modelFilters.CoordinateSystemDisplayFilter(csp,model,acqGait) csdf.setStatic(False) csdf.display() #---- Joint kinematics---- # relative angles modelFilters.ModelJCSFilter(model,acqGait).compute(description="vectoriel", pointLabelSuffix=pointSuffix) modelFilters.ModelAbsoluteAnglesFilter(model,acqGait, segmentLabels=["Left Foot","Right Foot","Pelvis","Thorax","Head"], angleLabels=["LFootProgress", "RFootProgress","Pelvis","Thorax", "Head"], eulerSequences=["TOR","TOR", "ROT","YXZ","TOR"], globalFrameOrientation = globalFrame, forwardProgression = forwardProgression).compute(pointLabelSuffix=pointSuffix) #---- Body segment parameters---- bspModel = bodySegmentParameters.Bsp(model) bspModel.compute() modelFilters.CentreOfMassFilter(model,acqGait).compute(pointLabelSuffix=pointSuffix) # Inverse dynamics if btkTools.checkForcePlateExist(acqGait): if model.m_bodypart != enums.BodyPart.UpperLimb: # --- force plate handling---- # find foot in contact mappedForcePlate = forceplates.matchingFootSideOnForceplate(acqGait,mfpa=mfpa) forceplates.addForcePlateGeneralEvents(acqGait,mappedForcePlate) LOGGER.logger.info("Manual Force plate assignment : %s" %mappedForcePlate) # assembly foot and force plate modelFilters.ForcePlateAssemblyFilter(model,acqGait,mappedForcePlate, leftSegmentLabel="Left Foot", rightSegmentLabel="Right Foot").compute(pointLabelSuffix=pointSuffix) #---- Joint kinetics---- idp = modelFilters.CGMLowerlimbInverseDynamicProcedure() modelFilters.InverseDynamicFilter(model, acqGait, procedure = idp, projection = momentProjection, globalFrameOrientation = globalFrame, forwardProgression = forwardProgression ).compute(pointLabelSuffix=pointSuffix) #---- Joint energetics---- modelFilters.JointPowerFilter(model,acqGait).compute(pointLabelSuffix=pointSuffix) btkTools.cleanAcq(acqGait) btkTools.applyOnValidFrames(acqGait,flag) if detectAnomaly and not anomalyException: LOGGER.logger.error("Anomalies has been detected - Check Warning messages of the log file") return acqGait,detectAnomaly
def calibrate(DATA_PATH,calibrateFilenameLabelled,translators, required_mp,optional_mp, leftFlatFoot,rightFlatFoot,headFlat, markerDiameter,hjcMethod, pointSuffix,**kwargs): """ Calibration of the CGM2.1 :param DATA_PATH [str]: path to your data :param calibrateFilenameLabelled [str]: c3d file :param translators [dict]: translators to apply :param required_mp [dict]: required anthropometric data :param optional_mp [dict]: optional anthropometric data (ex: LThighOffset,...) :param leftFlatFoot [bool]: enable of the flat foot option for the left foot :param rightFlatFoot [bool]: enable of the flat foot option for the right foot :param headFlat [bool]: enable of the head flat option :param markerDiameter [double]: marker diameter (mm) :param hjcMethod [str or list of 3 float]: method for locating the hip joint centre :param pointSuffix [str]: suffix to add to model outputs """ detectAnomaly = False if "anomalyException" in kwargs.keys(): anomalyException = kwargs["anomalyException"] else: anomalyException=False # --------------------------ACQUISITION ------------------------------------ # ---btk acquisition--- if "forceBtkAcq" in kwargs.keys(): acqStatic = kwargs["forceBtkAcq"] else: acqStatic = btkTools.smartReader((DATA_PATH+calibrateFilenameLabelled)) btkTools.checkMultipleSubject(acqStatic) if btkTools.isPointExist(acqStatic,"SACR"): translators["LPSI"] = "SACR" translators["RPSI"] = "SACR" LOGGER.logger.info("[pyCGM2] Sacrum marker detected") acqStatic = btkTools.applyTranslators(acqStatic,translators) trackingMarkers = cgm.CGM1.LOWERLIMB_TRACKING_MARKERS + cgm.CGM1.THORAX_TRACKING_MARKERS+ cgm.CGM1.UPPERLIMB_TRACKING_MARKERS actual_trackingMarkers,phatoms_trackingMarkers = btkTools.createPhantoms(acqStatic, trackingMarkers) vff = acqStatic.GetFirstFrame() vlf = acqStatic.GetLastFrame() # vff,vlf = btkTools.getFrameBoundaries(acqStatic,actual_trackingMarkers) flag = btkTools.getValidFrames(acqStatic,actual_trackingMarkers,frameBounds=[vff,vlf]) gapFlag = btkTools.checkGap(acqStatic,actual_trackingMarkers,frameBounds=[vff,vlf]) if gapFlag: raise Exception("[pyCGM2] Calibration aborted. Gap find during interval [%i-%i]. Crop your c3d " %(vff,vlf)) # --------------------ANOMALY------------------------------ # --Check MP adap = AnomalyDetectionProcedure.AnthropoDataAnomalyProcedure( required_mp) adf = AnomalyFilter.AnomalyDetectionFilter(None,None,adap) mp_anomaly = adf.run() if mp_anomaly["ErrorState"]: detectAnomaly = True # --marker presence markersets = [cgm.CGM1.LOWERLIMB_TRACKING_MARKERS, cgm.CGM1.THORAX_TRACKING_MARKERS, cgm.CGM1.UPPERLIMB_TRACKING_MARKERS] for markerset in markersets: ipdp = InspectorProcedure.MarkerPresenceDetectionProcedure( markerset) idf = InspectorFilter.InspectorFilter(acqStatic,calibrateFilenameLabelled,ipdp) inspector = idf.run() # # --marker outliers if inspector["In"] !=[]: madp = AnomalyDetectionProcedure.MarkerAnomalyDetectionRollingProcedure(inspector["In"], plot=False, window=4,threshold = 3) adf = AnomalyFilter.AnomalyDetectionFilter(acqStatic,calibrateFilenameLabelled,madp) anomaly = adf.run() anomalyIndexes = anomaly["Output"] if anomaly["ErrorState"]: detectAnomaly = True if detectAnomaly and anomalyException: raise Exception ("Anomalies has been detected - Check Warning message of the log file") # --------------------MODELLING------------------------------ # ---check marker set used---- dcm = cgm.CGM.detectCalibrationMethods(acqStatic) # ---definition--- model=cgm2.CGM2_1() model.configure(detectedCalibrationMethods=dcm) model.addAnthropoInputParameters(required_mp,optional=optional_mp) if dcm["Left Knee"] == enums.JointCalibrationMethod.KAD: actual_trackingMarkers.append("LKNE") if dcm["Right Knee"] == enums.JointCalibrationMethod.KAD: actual_trackingMarkers.append("RKNE") model.setStaticTrackingMarkers(actual_trackingMarkers) # --store calibration parameters-- model.setStaticFilename(calibrateFilenameLabelled) model.setCalibrationProperty("leftFlatFoot",leftFlatFoot) model.setCalibrationProperty("rightFlatFoot",rightFlatFoot) model.setCalibrationProperty("headFlat",headFlat) model.setCalibrationProperty("markerDiameter",markerDiameter) # --------------------------STATIC CALBRATION-------------------------- scp=modelFilters.StaticCalibrationProcedure(model) # load calibration procedure # ---initial calibration filter---- # use if all optional mp are zero modelFilters.ModelCalibrationFilter(scp,acqStatic,model, leftFlatFoot = leftFlatFoot, rightFlatFoot = rightFlatFoot, headFlat= headFlat, markerDiameter=markerDiameter, ).compute() # ---- Decorators ----- decorators.applyBasicDecorators(dcm, model,acqStatic,optional_mp,markerDiameter) decorators.applyHJCDecorators(model,hjcMethod) # ----Final Calibration filter if model previously decorated ----- if model.decoratedModel: # initial static filter modelFilters.ModelCalibrationFilter(scp,acqStatic,model, leftFlatFoot = leftFlatFoot, rightFlatFoot = rightFlatFoot, markerDiameter=markerDiameter, headFlat= headFlat, ).compute() modMotion=modelFilters.ModelMotionFilter(scp,acqStatic,model,enums.motionMethod.Determinist, markerDiameter=markerDiameter) modMotion.compute() # ----progression Frame---- progressionFlag = False if btkTools.isPointsExist(acqStatic, ['LASI', 'RASI', 'RPSI', 'LPSI'],ignorePhantom=False): LOGGER.logger.info("[pyCGM2] - progression axis detected from Pelvic markers ") pfp = progressionFrame.PelvisProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqStatic,pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] progressionFlag = True elif btkTools.isPointsExist(acqStatic, ['C7', 'T10', 'CLAV', 'STRN'],ignorePhantom=False) and not progressionFlag: LOGGER.logger.info("[pyCGM2] - progression axis detected from Thoracic markers ") pfp = progressionFrame.ThoraxProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqStatic,pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] else: globalFrame = "XYZ" progressionAxis = "X" forwardProgression = True LOGGER.logger.error("[pyCGM2] - impossible to detect progression axis - neither pelvic nor thoracic markers are present. Progression set to +X by default ") if "displayCoordinateSystem" in kwargs.keys() and kwargs["displayCoordinateSystem"]: csp = modelFilters.ModelCoordinateSystemProcedure(model) csdf = modelFilters.CoordinateSystemDisplayFilter(csp,model,acqStatic) csdf.setStatic(False) csdf.display() # ----------------------CGM MODELLING---------------------------------- # ----motion filter---- # notice : viconCGM1compatible option duplicate error on Construction of the foot coordinate system if "noKinematicsCalculation" in kwargs.keys() and kwargs["noKinematicsCalculation"]: LOGGER.logger.warning("[pyCGM2] No Kinematic calculation done for the static file") return model, acqStatic else: #---- Joint kinematics---- # relative angles modelFilters.ModelJCSFilter(model,acqStatic).compute(description="vectoriel", pointLabelSuffix=pointSuffix) modelFilters.ModelAbsoluteAnglesFilter(model,acqStatic, segmentLabels=["Left Foot","Right Foot","Pelvis","Thorax","Head"], angleLabels=["LFootProgress", "RFootProgress","Pelvis","Thorax", "Head"], eulerSequences=["TOR","TOR", "ROT","YXZ","TOR"], globalFrameOrientation = globalFrame, forwardProgression = forwardProgression).compute(pointLabelSuffix=pointSuffix) # BSP model bspModel = bodySegmentParameters.Bsp(model) bspModel.compute() modelFilters.CentreOfMassFilter(model,acqStatic).compute(pointLabelSuffix=pointSuffix) btkTools.cleanAcq(acqStatic) if detectAnomaly and not anomalyException: LOGGER.logger.error("Anomalies has been detected - Check Warning messages of the log file") return model, acqStatic,detectAnomaly
def fitting(model, DATA_PATH, reconstructFilenameLabelled, translators, weights, ik_flag, markerDiameter, pointSuffix, mfpa, momentProjection, **kwargs): """ Fitting of the CGM2.5 :param model [str]: pyCGM2 model previously calibrated :param DATA_PATH [str]: path to your data :param reconstructFilenameLabelled [string list]: c3d files :param translators [dict]: translators to apply :param ik_flag [bool]: enable the inverse kinematic solver :param mfpa [str]: manual force plate assignement :param markerDiameter [double]: marker diameter (mm) :param pointSuffix [str]: suffix to add to model outputs :param momentProjection [str]: Coordinate system in which joint moment is expressed """ detectAnomaly = False if "anomalyException" in kwargs.keys(): anomalyException = kwargs["anomalyException"] else: anomalyException = False if "forceFoot6DoF" in kwargs.keys() and kwargs["forceFoot6DoF"]: forceFoot6DoF_flag = True else: forceFoot6DoF_flag = False if "Fitting" in weights.keys(): weights = weights["Fitting"]["Weight"] # --- btk acquisition ---- if "forceBtkAcq" in kwargs.keys(): acqGait = kwargs["forceBtkAcq"] else: acqGait = btkTools.smartReader( (DATA_PATH + reconstructFilenameLabelled)) btkTools.checkMultipleSubject(acqGait) if btkTools.isPointExist(acqGait, "SACR"): translators["LPSI"] = "SACR" translators["RPSI"] = "SACR" LOGGER.logger.info("[pyCGM2] Sacrum marker detected") acqGait = btkTools.applyTranslators(acqGait, translators) trackingMarkers = cgm2.CGM2_5.LOWERLIMB_TRACKING_MARKERS + cgm2.CGM2_5.THORAX_TRACKING_MARKERS + cgm2.CGM2_5.UPPERLIMB_TRACKING_MARKERS actual_trackingMarkers, phatoms_trackingMarkers = btkTools.createPhantoms( acqGait, trackingMarkers) vff, vlf = btkTools.getFrameBoundaries(acqGait, actual_trackingMarkers) if "frameInit" in kwargs.keys() and kwargs["frameInit"] is not None: vff = kwargs["frameInit"] LOGGER.logger.info("[pyCGM2] first frame forced to frame [%s]" % (vff)) if "frameEnd" in kwargs.keys() and kwargs["frameEnd"] is not None: vlf = kwargs["frameEnd"] LOGGER.logger.info("[pyCGM2] end frame forced to frame [%s]" % (vlf)) flag = btkTools.getValidFrames(acqGait, actual_trackingMarkers, frameBounds=[vff, vlf]) LOGGER.logger.info("[pyCGM2] Computation from frame [%s] to frame [%s]" % (vff, vlf)) # --------------------ANOMALY------------------------------ for marker in actual_trackingMarkers: if marker not in model.getStaticTrackingMarkers(): LOGGER.logger.warning( "[pyCGM2-Anomaly] marker [%s] - not used during static calibration - wrong kinematic for the segment attached to this marker. " % (marker)) # --marker presence markersets = [ cgm2.CGM2_5.LOWERLIMB_TRACKING_MARKERS, cgm2.CGM2_5.THORAX_TRACKING_MARKERS, cgm2.CGM2_5.UPPERLIMB_TRACKING_MARKERS ] for markerset in markersets: ipdp = InspectorProcedure.MarkerPresenceDetectionProcedure(markerset) idf = InspectorFilter.InspectorFilter(acqGait, reconstructFilenameLabelled, ipdp) inspector = idf.run() # --marker outliers if inspector["In"] != []: madp = AnomalyDetectionProcedure.MarkerAnomalyDetectionRollingProcedure( inspector["In"], plot=False, window=5, threshold=3) adf = AnomalyFilter.AnomalyDetectionFilter( acqGait, reconstructFilenameLabelled, madp, frameRange=[vff, vlf]) anomaly = adf.run() anomalyIndexes = anomaly["Output"] if anomaly["ErrorState"]: detectAnomaly = True if btkTools.checkForcePlateExist(acqGait): afpp = AnomalyDetectionProcedure.ForcePlateAnomalyProcedure() adf = AnomalyFilter.AnomalyDetectionFilter(acqGait, reconstructFilenameLabelled, afpp, frameRange=[vff, vlf]) anomaly = adf.run() if anomaly["ErrorState"]: detectAnomaly = True if detectAnomaly and anomalyException: raise Exception( "Anomalies has been detected - Check Warning message of the log file" ) # --------------------MODELLING------------------------------ # filtering # ----------------------- if "fc_lowPass_marker" in kwargs.keys( ) and kwargs["fc_lowPass_marker"] != 0: fc = kwargs["fc_lowPass_marker"] order = 4 if "order_lowPass_marker" in kwargs.keys(): order = kwargs["order_lowPass_marker"] signal_processing.markerFiltering(acqGait, trackingMarkers, order=order, fc=fc) if "fc_lowPass_forcePlate" in kwargs.keys( ) and kwargs["fc_lowPass_forcePlate"] != 0: fc = kwargs["fc_lowPass_forcePlate"] order = 4 if "order_lowPass_forcePlate" in kwargs.keys(): order = kwargs["order_lowPass_forcePlate"] signal_processing.forcePlateFiltering(acqGait, order=order, fc=fc) # --- initial motion Filter --- scp = modelFilters.StaticCalibrationProcedure(model) modMotion = modelFilters.ModelMotionFilter(scp, acqGait, model, enums.motionMethod.Sodervisk) modMotion.compute() progressionFlag = False if btkTools.isPointExist(acqGait, 'LHEE', ignorePhantom=False) or btkTools.isPointExist( acqGait, 'RHEE', ignorePhantom=False): pfp = progressionFrame.PointProgressionFrameProcedure(marker="LHEE") \ if btkTools.isPointExist(acqGait, 'LHEE',ignorePhantom=False) \ else progressionFrame.PointProgressionFrameProcedure(marker="RHEE") pff = progressionFrame.ProgressionFrameFilter(acqGait, pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] progressionFlag = True elif btkTools.isPointsExist(acqGait, ['LASI', 'RASI', 'RPSI', 'LPSI'], ignorePhantom=False) and not progressionFlag: LOGGER.logger.info( "[pyCGM2] - progression axis detected from Pelvic markers ") pfp = progressionFrame.PelvisProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqGait, pfp) pff.compute() globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] progressionFlag = True elif btkTools.isPointsExist(acqGait, ['C7', 'T10', 'CLAV', 'STRN'], ignorePhantom=False) and not progressionFlag: LOGGER.logger.info( "[pyCGM2] - progression axis detected from Thoracic markers ") pfp = progressionFrame.ThoraxProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqGait, pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] else: globalFrame = "XYZ" progressionAxis = "X" forwardProgression = True LOGGER.logger.error( "[pyCGM2] - impossible to detect progression axis - neither pelvic nor thoracic markers are present. Progression set to +X by default " ) for target in weights.keys(): if target not in actual_trackingMarkers or target not in model.getStaticIkTargets( ): weights[target] = 0 LOGGER.logger.warning( "[pyCGM2] - the IK targeted marker [%s] is not labelled in the acquisition [%s]" % (target, reconstructFilenameLabelled)) if ik_flag: # ---OPENSIM IK--- # --- opensim calibration Filter --- osimfile = pyCGM2.OPENSIM_PREBUILD_MODEL_PATH + "models\\osim\\lowerLimb_ballsJoints.osim" # osimfile markersetFile = pyCGM2.OPENSIM_PREBUILD_MODEL_PATH + "models\\settings\\cgm2_4\\cgm2_4-markerset.xml" # markerset cgmCalibrationprocedure = opensimFilters.CgmOpensimCalibrationProcedures( model) # procedure oscf = opensimFilters.opensimCalibrationFilter( osimfile, model, cgmCalibrationprocedure, DATA_PATH) oscf.addMarkerSet(markersetFile) scalingOsim = oscf.build() # --- opensim Fitting Filter --- iksetupFile = pyCGM2.OPENSIM_PREBUILD_MODEL_PATH + "models\\settings\\cgm2_4\\cgm2_4-ikSetUp_template.xml" # ik tl file cgmFittingProcedure = opensimFilters.CgmOpensimFittingProcedure( model) # procedure cgmFittingProcedure.updateMarkerWeight("LASI", weights["LASI"]) cgmFittingProcedure.updateMarkerWeight("RASI", weights["RASI"]) cgmFittingProcedure.updateMarkerWeight("LPSI", weights["LPSI"]) cgmFittingProcedure.updateMarkerWeight("RPSI", weights["RPSI"]) cgmFittingProcedure.updateMarkerWeight("RTHI", weights["RTHI"]) cgmFittingProcedure.updateMarkerWeight("RKNE", weights["RKNE"]) cgmFittingProcedure.updateMarkerWeight("RTIB", weights["RTIB"]) cgmFittingProcedure.updateMarkerWeight("RANK", weights["RANK"]) cgmFittingProcedure.updateMarkerWeight("RHEE", weights["RHEE"]) cgmFittingProcedure.updateMarkerWeight("RTOE", weights["RTOE"]) cgmFittingProcedure.updateMarkerWeight("LTHI", weights["LTHI"]) cgmFittingProcedure.updateMarkerWeight("LKNE", weights["LKNE"]) cgmFittingProcedure.updateMarkerWeight("LTIB", weights["LTIB"]) cgmFittingProcedure.updateMarkerWeight("LANK", weights["LANK"]) cgmFittingProcedure.updateMarkerWeight("LHEE", weights["LHEE"]) cgmFittingProcedure.updateMarkerWeight("LTOE", weights["LTOE"]) cgmFittingProcedure.updateMarkerWeight("LTHAP", weights["LTHAP"]) cgmFittingProcedure.updateMarkerWeight("LTHAD", weights["LTHAD"]) cgmFittingProcedure.updateMarkerWeight("LTIAP", weights["LTIAP"]) cgmFittingProcedure.updateMarkerWeight("LTIAD", weights["LTIAD"]) cgmFittingProcedure.updateMarkerWeight("RTHAP", weights["RTHAP"]) cgmFittingProcedure.updateMarkerWeight("RTHAD", weights["RTHAD"]) cgmFittingProcedure.updateMarkerWeight("RTIAP", weights["RTIAP"]) cgmFittingProcedure.updateMarkerWeight("RTIAD", weights["RTIAD"]) cgmFittingProcedure.updateMarkerWeight("LSMH", weights["LSMH"]) cgmFittingProcedure.updateMarkerWeight("LFMH", weights["LFMH"]) cgmFittingProcedure.updateMarkerWeight("LVMH", weights["LVMH"]) cgmFittingProcedure.updateMarkerWeight("RSMH", weights["RSMH"]) cgmFittingProcedure.updateMarkerWeight("RFMH", weights["RFMH"]) cgmFittingProcedure.updateMarkerWeight("RVMH", weights["RVMH"]) # cgmFittingProcedure.updateMarkerWeight("LTHL",weights["LTHL"]) # cgmFittingProcedure.updateMarkerWeight("LTHLD",weights["LTHLD"]) # cgmFittingProcedure.updateMarkerWeight("LPAT",weights["LPAT"]) # cgmFittingProcedure.updateMarkerWeight("LTIBL",weights["LTIBL"]) # cgmFittingProcedure.updateMarkerWeight("RTHL",weights["RTHL"]) # cgmFittingProcedure.updateMarkerWeight("RTHLD",weights["RTHLD"]) # cgmFittingProcedure.updateMarkerWeight("RPAT",weights["RPAT"]) # cgmFittingProcedure.updateMarkerWeight("RTIBL",weights["RTIBL"]) osrf = opensimFilters.opensimFittingFilter(iksetupFile, scalingOsim, cgmFittingProcedure, DATA_PATH, acqGait) osrf.setTimeRange(acqGait, beginFrame=vff, lastFrame=vlf) if "ikAccuracy" in kwargs.keys(): osrf.setAccuracy(kwargs["ikAccuracy"]) LOGGER.logger.info("-------INVERSE KINEMATICS IN PROGRESS----------") try: acqIK = osrf.run(DATA_PATH + reconstructFilenameLabelled, progressionAxis=progressionAxis, forwardProgression=forwardProgression) LOGGER.logger.info("[pyCGM2] - IK solver complete") except: LOGGER.logger.error("[pyCGM2] - IK solver fails") acqIK = acqGait detectAnomaly = True LOGGER.logger.info( "---------------------------------------------------") # eventual gait acquisition to consider for joint kinematics finalAcqGait = acqIK if ik_flag else acqGait if "displayCoordinateSystem" in kwargs.keys( ) and kwargs["displayCoordinateSystem"]: csp = modelFilters.ModelCoordinateSystemProcedure(model) csdf = modelFilters.CoordinateSystemDisplayFilter( csp, model, finalAcqGait) csdf.setStatic(False) csdf.display() # --- final pyCGM2 model motion Filter --- # use fitted markers modMotionFitted = modelFilters.ModelMotionFilter( scp, finalAcqGait, model, enums.motionMethod.Sodervisk, markerDiameter=markerDiameter, forceFoot6DoF=forceFoot6DoF_flag) modMotionFitted.compute() #---- Joint kinematics---- # relative angles modelFilters.ModelJCSFilter(model, finalAcqGait).compute( description="vectoriel", pointLabelSuffix=pointSuffix) modelFilters.ModelAbsoluteAnglesFilter( model, finalAcqGait, segmentLabels=["Left Foot", "Right Foot", "Pelvis", "Thorax", "Head"], angleLabels=[ "LFootProgress", "RFootProgress", "Pelvis", "Thorax", "Head" ], eulerSequences=["TOR", "TOR", "ROT", "YXZ", "TOR"], globalFrameOrientation=globalFrame, forwardProgression=forwardProgression).compute( pointLabelSuffix=pointSuffix) #---- Body segment parameters---- bspModel = bodySegmentParameters.Bsp(model) bspModel.compute() modelFilters.CentreOfMassFilter( model, finalAcqGait).compute(pointLabelSuffix=pointSuffix) # Inverse dynamics if btkTools.checkForcePlateExist(acqGait): # --- force plate handling---- # find foot in contact mappedForcePlate = forceplates.matchingFootSideOnForceplate( finalAcqGait, mfpa=mfpa) forceplates.addForcePlateGeneralEvents(finalAcqGait, mappedForcePlate) LOGGER.logger.warning("Manual Force plate assignment : %s" % mappedForcePlate) # assembly foot and force plate modelFilters.ForcePlateAssemblyFilter( model, finalAcqGait, mappedForcePlate, leftSegmentLabel="Left Foot", rightSegmentLabel="Right Foot").compute( pointLabelSuffix=pointSuffix) #---- Joint kinetics---- idp = modelFilters.CGMLowerlimbInverseDynamicProcedure() modelFilters.InverseDynamicFilter( model, finalAcqGait, procedure=idp, projection=momentProjection, globalFrameOrientation=globalFrame, forwardProgression=forwardProgression).compute( pointLabelSuffix=pointSuffix) #---- Joint energetics---- modelFilters.JointPowerFilter( model, finalAcqGait).compute(pointLabelSuffix=pointSuffix) #---- zero unvalid frames --- btkTools.cleanAcq(finalAcqGait) btkTools.applyOnValidFrames(finalAcqGait, flag) if detectAnomaly and not anomalyException: LOGGER.logger.error( "Anomalies has been detected - Check Warning messages of the log file" ) return finalAcqGait, detectAnomaly
def calibrate(DATA_PATH, calibrateFilenameLabelled, translators, weights, required_mp, optional_mp, ik_flag, leftFlatFoot, rightFlatFoot, headFlat, markerDiameter, hjcMethod, pointSuffix, **kwargs): """ Calibration of the CGM2.5 :param DATA_PATH [str]: path to your data :param calibrateFilenameLabelled [str]: c3d file :param translators [dict]: translators to apply :param required_mp [dict]: required anthropometric data :param optional_mp [dict]: optional anthropometric data (ex: LThighOffset,...) :param ik_flag [bool]: enable the inverse kinematic solver :param leftFlatFoot [bool]: enable of the flat foot option for the left foot :param rightFlatFoot [bool]: enable of the flat foot option for the right foot :param headFlat [bool]: enable of the head flat option :param markerDiameter [double]: marker diameter (mm) :param hjcMethod [str or list of 3 float]: method for locating the hip joint centre :param pointSuffix [str]: suffix to add to model outputs """ detectAnomaly = False if "anomalyException" in kwargs.keys(): anomalyException = kwargs["anomalyException"] else: anomalyException = False if "Fitting" in weights.keys(): weights = weights["Fitting"]["Weight"] # ---btk acquisition--- if "forceBtkAcq" in kwargs.keys(): acqStatic = kwargs["forceBtkAcq"] else: acqStatic = btkTools.smartReader( (DATA_PATH + calibrateFilenameLabelled)) btkTools.checkMultipleSubject(acqStatic) if btkTools.isPointExist(acqStatic, "SACR"): translators["LPSI"] = "SACR" translators["RPSI"] = "SACR" LOGGER.logger.info("[pyCGM2] Sacrum marker detected") acqStatic = btkTools.applyTranslators(acqStatic, translators) trackingMarkers = cgm2.CGM2_5.LOWERLIMB_TRACKING_MARKERS + cgm2.CGM2_5.THORAX_TRACKING_MARKERS + cgm2.CGM2_5.UPPERLIMB_TRACKING_MARKERS actual_trackingMarkers, phatoms_trackingMarkers = btkTools.createPhantoms( acqStatic, trackingMarkers) vff = acqStatic.GetFirstFrame() vlf = acqStatic.GetLastFrame() # vff,vlf = btkTools.getFrameBoundaries(acqStatic,actual_trackingMarkers) flag = btkTools.getValidFrames(acqStatic, actual_trackingMarkers, frameBounds=[vff, vlf]) gapFlag = btkTools.checkGap(acqStatic, actual_trackingMarkers, frameBounds=[vff, vlf]) if gapFlag: raise Exception( "[pyCGM2] Calibration aborted. Gap find during interval [%i-%i]. Crop your c3d " % (vff, vlf)) # --------------------ANOMALY------------------------------ # --Check MP adap = AnomalyDetectionProcedure.AnthropoDataAnomalyProcedure(required_mp) adf = AnomalyFilter.AnomalyDetectionFilter(None, None, adap) mp_anomaly = adf.run() if mp_anomaly["ErrorState"]: detectAnomaly = True # --marker presence markersets = [ cgm2.CGM2_5.LOWERLIMB_TRACKING_MARKERS, cgm2.CGM2_5.THORAX_TRACKING_MARKERS, cgm2.CGM2_5.UPPERLIMB_TRACKING_MARKERS ] for markerset in markersets: ipdp = InspectorProcedure.MarkerPresenceDetectionProcedure(markerset) idf = InspectorFilter.InspectorFilter(acqStatic, calibrateFilenameLabelled, ipdp) inspector = idf.run() # # --marker outliers if inspector["In"] != []: madp = AnomalyDetectionProcedure.MarkerAnomalyDetectionRollingProcedure( inspector["In"], plot=False, window=4, threshold=3) adf = AnomalyFilter.AnomalyDetectionFilter( acqStatic, calibrateFilenameLabelled, madp) anomaly = adf.run() anomalyIndexes = anomaly["Output"] if anomaly["ErrorState"]: detectAnomaly = True if detectAnomaly and anomalyException: raise Exception( "Anomalies has been detected - Check Warning message of the log file" ) # --------------------MODELLING------------------------------ # ---check marker set used---- dcm = cgm.CGM.detectCalibrationMethods(acqStatic) # --------------------------MODEL-------------------------------------- # ---definition--- model = cgm2.CGM2_5() model.configure(detectedCalibrationMethods=dcm) model.addAnthropoInputParameters(required_mp, optional=optional_mp) if dcm["Left Knee"] == enums.JointCalibrationMethod.KAD: actual_trackingMarkers.append("LKNE") if dcm["Right Knee"] == enums.JointCalibrationMethod.KAD: actual_trackingMarkers.append("RKNE") model.setStaticTrackingMarkers(actual_trackingMarkers) # --store calibration parameters-- model.setStaticFilename(calibrateFilenameLabelled) model.setCalibrationProperty("leftFlatFoot", leftFlatFoot) model.setCalibrationProperty("rightFlatFoot", rightFlatFoot) model.setCalibrationProperty("headFlat", headFlat) model.setCalibrationProperty("markerDiameter", markerDiameter) # --------------------------STATIC CALBRATION-------------------------- scp = modelFilters.StaticCalibrationProcedure( model) # load calibration procedure # ---initial calibration filter---- # use if all optional mp are zero modelFilters.ModelCalibrationFilter( scp, acqStatic, model, leftFlatFoot=leftFlatFoot, rightFlatFoot=rightFlatFoot, headFlat=headFlat, markerDiameter=markerDiameter, ).compute() # ---- Decorators ----- decorators.applyBasicDecorators(dcm, model, acqStatic, optional_mp, markerDiameter) decorators.applyHJCDecorators(model, hjcMethod) # ----Final Calibration filter if model previously decorated ----- if model.decoratedModel: # initial static filter modelFilters.ModelCalibrationFilter( scp, acqStatic, model, leftFlatFoot=leftFlatFoot, rightFlatFoot=rightFlatFoot, headFlat=headFlat, markerDiameter=markerDiameter).compute() # ----------------------CGM MODELLING---------------------------------- # ----motion filter---- modMotion = modelFilters.ModelMotionFilter(scp, acqStatic, model, enums.motionMethod.Sodervisk, markerDiameter=markerDiameter) modMotion.compute() # ----progression Frame---- progressionFlag = False if btkTools.isPointsExist(acqStatic, ['LASI', 'RASI', 'RPSI', 'LPSI'], ignorePhantom=False): LOGGER.logger.info( "[pyCGM2] - progression axis detected from Pelvic markers ") pfp = progressionFrame.PelvisProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqStatic, pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] progressionFlag = True elif btkTools.isPointsExist(acqStatic, ['C7', 'T10', 'CLAV', 'STRN'], ignorePhantom=False) and not progressionFlag: LOGGER.logger.info( "[pyCGM2] - progression axis detected from Thoracic markers ") pfp = progressionFrame.ThoraxProgressionFrameProcedure() pff = progressionFrame.ProgressionFrameFilter(acqStatic, pfp) pff.compute() progressionAxis = pff.outputs["progressionAxis"] globalFrame = pff.outputs["globalFrame"] forwardProgression = pff.outputs["forwardProgression"] else: globalFrame = "XYZ" progressionAxis = "X" forwardProgression = True LOGGER.logger.error( "[pyCGM2] - impossible to detect progression axis - neither pelvic nor thoracic markers are present. Progression set to +X by default " ) # ----manage IK Targets---- ikTargets = list() for target in weights.keys(): if target not in actual_trackingMarkers: weights[target] = 0 LOGGER.logger.warning( "[pyCGM2] - the IK targeted marker [%s] is not labelled in the acquisition [%s]" % (target, calibrateFilenameLabelled)) else: ikTargets.append(target) model.setStaticIkTargets(ikTargets) if "noKinematicsCalculation" in kwargs.keys( ) and kwargs["noKinematicsCalculation"]: LOGGER.logger.warning( "[pyCGM2] No Kinematic calculation done for the static file") return model, acqStatic, detectAnomaly else: if ik_flag: # ---OPENSIM IK--- # --- opensim calibration Filter --- osimfile = pyCGM2.OPENSIM_PREBUILD_MODEL_PATH + "models\\osim\\lowerLimb_ballsJoints.osim" # osimfile markersetFile = pyCGM2.OPENSIM_PREBUILD_MODEL_PATH + "models\\settings\\cgm2_4\\cgm2_4-markerset.xml" # markerset cgmCalibrationprocedure = opensimFilters.CgmOpensimCalibrationProcedures( model) # procedure oscf = opensimFilters.opensimCalibrationFilter( osimfile, model, cgmCalibrationprocedure, DATA_PATH) oscf.addMarkerSet(markersetFile) scalingOsim = oscf.build() # --- opensim Fitting Filter --- iksetupFile = pyCGM2.OPENSIM_PREBUILD_MODEL_PATH + "models\\settings\\cgm2_4\\cgm2_4-ikSetUp_template.xml" # ik tool file cgmFittingProcedure = opensimFilters.CgmOpensimFittingProcedure( model) # procedure cgmFittingProcedure.updateMarkerWeight("LASI", weights["LASI"]) cgmFittingProcedure.updateMarkerWeight("RASI", weights["RASI"]) cgmFittingProcedure.updateMarkerWeight("LPSI", weights["LPSI"]) cgmFittingProcedure.updateMarkerWeight("RPSI", weights["RPSI"]) cgmFittingProcedure.updateMarkerWeight("RTHI", weights["RTHI"]) cgmFittingProcedure.updateMarkerWeight("RKNE", weights["RKNE"]) cgmFittingProcedure.updateMarkerWeight("RTIB", weights["RTIB"]) cgmFittingProcedure.updateMarkerWeight("RANK", weights["RANK"]) cgmFittingProcedure.updateMarkerWeight("RHEE", weights["RHEE"]) cgmFittingProcedure.updateMarkerWeight("RTOE", weights["RTOE"]) cgmFittingProcedure.updateMarkerWeight("LTHI", weights["LTHI"]) cgmFittingProcedure.updateMarkerWeight("LKNE", weights["LKNE"]) cgmFittingProcedure.updateMarkerWeight("LTIB", weights["LTIB"]) cgmFittingProcedure.updateMarkerWeight("LANK", weights["LANK"]) cgmFittingProcedure.updateMarkerWeight("LHEE", weights["LHEE"]) cgmFittingProcedure.updateMarkerWeight("LTOE", weights["LTOE"]) cgmFittingProcedure.updateMarkerWeight("LTHAP", weights["LTHAP"]) cgmFittingProcedure.updateMarkerWeight("LTHAD", weights["LTHAD"]) cgmFittingProcedure.updateMarkerWeight("LTIAP", weights["LTIAP"]) cgmFittingProcedure.updateMarkerWeight("LTIAD", weights["LTIAD"]) cgmFittingProcedure.updateMarkerWeight("RTHAP", weights["RTHAP"]) cgmFittingProcedure.updateMarkerWeight("RTHAD", weights["RTHAD"]) cgmFittingProcedure.updateMarkerWeight("RTIAP", weights["RTIAP"]) cgmFittingProcedure.updateMarkerWeight("RTIAD", weights["RTIAD"]) cgmFittingProcedure.updateMarkerWeight("LSMH", weights["LSMH"]) cgmFittingProcedure.updateMarkerWeight("LFMH", weights["LFMH"]) cgmFittingProcedure.updateMarkerWeight("LVMH", weights["LVMH"]) cgmFittingProcedure.updateMarkerWeight("RSMH", weights["RSMH"]) cgmFittingProcedure.updateMarkerWeight("RFMH", weights["RFMH"]) cgmFittingProcedure.updateMarkerWeight("RVMH", weights["RVMH"]) # cgmFittingProcedure.updateMarkerWeight("LTHL",weights["LTHL"]) # cgmFittingProcedure.updateMarkerWeight("LTHLD",weights["LTHLD"]) # cgmFittingProcedure.updateMarkerWeight("LPAT",weights["LPAT"]) # cgmFittingProcedure.updateMarkerWeight("LTIBL",weights["LTIBL"]) # cgmFittingProcedure.updateMarkerWeight("RTHL",weights["RTHL"]) # cgmFittingProcedure.updateMarkerWeight("RTHLD",weights["RTHLD"]) # cgmFittingProcedure.updateMarkerWeight("RPAT",weights["RPAT"]) # cgmFittingProcedure.updateMarkerWeight("RTIBL",weights["RTIBL"]) osrf = opensimFilters.opensimFittingFilter(iksetupFile, scalingOsim, cgmFittingProcedure, DATA_PATH, acqStatic, accuracy=1e-5) LOGGER.logger.info( "-------INVERSE KINEMATICS IN PROGRESS----------") try: acqStaticIK = osrf.run(DATA_PATH + calibrateFilenameLabelled, progressionAxis=progressionAxis, forwardProgression=forwardProgression) LOGGER.logger.info("[pyCGM2] - IK solver complete") except: LOGGER.logger.error("[pyCGM2] - IK solver fails") acqStaticIK = acqStatic detectAnomaly = True LOGGER.logger.info( "-----------------------------------------------") # eventual static acquisition to consider for joint kinematics finalAcqStatic = acqStaticIK if ik_flag else acqStatic # --- final pyCGM2 model motion Filter --- # use fitted markers modMotionFitted = modelFilters.ModelMotionFilter( scp, finalAcqStatic, model, enums.motionMethod.Sodervisk) modMotionFitted.compute() if "displayCoordinateSystem" in kwargs.keys( ) and kwargs["displayCoordinateSystem"]: csp = modelFilters.ModelCoordinateSystemProcedure(model) csdf = modelFilters.CoordinateSystemDisplayFilter( csp, model, finalAcqStatic) csdf.setStatic(False) csdf.display() #---- Joint kinematics---- # relative angles modelFilters.ModelJCSFilter(model, finalAcqStatic).compute( description="vectoriel", pointLabelSuffix=pointSuffix) modelFilters.ModelAbsoluteAnglesFilter( model, finalAcqStatic, segmentLabels=[ "Left Foot", "Right Foot", "Pelvis", "Thorax", "Head" ], angleLabels=[ "LFootProgress", "RFootProgress", "Pelvis", "Thorax", "Head" ], eulerSequences=["TOR", "TOR", "ROT", "YXZ", "TOR"], globalFrameOrientation=globalFrame, forwardProgression=forwardProgression).compute( pointLabelSuffix=pointSuffix) # BSP model bspModel = bodySegmentParameters.Bsp(model) bspModel.compute() modelFilters.CentreOfMassFilter( model, finalAcqStatic).compute(pointLabelSuffix=pointSuffix) btkTools.cleanAcq(finalAcqStatic) if detectAnomaly and not anomalyException: LOGGER.logger.error( "Anomalies has been detected - Check Warning messages of the log file" ) return model, finalAcqStatic, detectAnomaly