Exemple #1
0
def print_distribution_statistics(original, models, steps, resolution):
    ret = "Model	& Order     &  Interval & Distribution	\\\\ \n"
    for fts in models:
        _crps1, _crps2, _t1, _t2 = Measures.get_distribution_statistics(
            original, fts, steps, resolution)
        ret += fts.shortname + "		& "
        ret += str(fts.order) + "		& "
        ret += str(_crps1) + "		& "
        ret += str(_crps2) + "	\\\\ \n"
    print(ret)
Exemple #2
0
def print_distribution_statistics(original, models, steps, resolution):
    """
    Run probabilistic benchmarks on given models and data and print the results

    :param data: test data
    :param models: a list of FTS models to benchmark
    :return:
    """
    ret = "Model	& Order     &  Interval & Distribution	\\\\ \n"
    for fts in models:
        _crps1, _crps2, _t1, _t2 = Measures.get_distribution_statistics(original, fts, steps, resolution)
        ret += fts.shortname + "		& "
        ret += str(fts.order) + "		& "
        ret += str(_crps1) + "		& "
        ret += str(_crps2) + "	\\\\ \n"
    print(ret)
Exemple #3
0
def run_probabilistic(mfts,
                      partitioner,
                      train_data,
                      test_data,
                      window_key=None,
                      **kwargs):
    """
    Probabilistic forecast benchmark function to be executed on cluster nodes
    :param mfts: FTS model
    :param partitioner: Universe of Discourse partitioner
    :param train_data: data used to train the model
    :param test_data: ata used to test the model
    :param steps:
    :param resolution:
    :param window_key: id of the sliding window
    :param transformation: data transformation
    :param indexer: seasonal indexer
    :return: a dictionary with the benchmark results
    """
    import time
    import numpy as np
    from pyFTS.models import hofts, ifts, pwfts
    from pyFTS.models.ensemble import ensemble
    from pyFTS.partitioners import Grid, Entropy, FCM
    from pyFTS.benchmarks import Measures, arima, quantreg, knn
    from pyFTS.models.seasonal import SeasonalIndexer

    tmp = [
        hofts.HighOrderFTS, ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS,
        arima.ARIMA, ensemble.AllMethodEnsembleFTS, knn.KNearestNeighbors
    ]

    tmp2 = [
        Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitioner
    ]

    tmp3 = [
        Measures.get_distribution_statistics, SeasonalIndexer.SeasonalIndexer,
        SeasonalIndexer.LinearSeasonalIndexer
    ]

    indexer = kwargs.get('indexer', None)

    steps_ahead = kwargs.get('steps_ahead', 1)
    method = kwargs.get('method', None)

    if mfts.benchmark_only:
        _key = mfts.shortname + str(
            mfts.order if mfts.order is not None else "") + str(mfts.alpha)
    else:
        pttr = str(partitioner.__module__).split('.')[-1]
        _key = mfts.shortname + " n = " + str(
            mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
        mfts.partitioner = partitioner
        mfts.append_transformation(partitioner.transformation)

    _key += str(steps_ahead)
    _key += str(method) if method is not None else ""

    if mfts.has_seasonality:
        mfts.indexer = indexer

    _start = time.time()
    mfts.fit(train_data, **kwargs)
    _end = time.time()
    times = _end - _start

    _crps1, _t1, _brier = Measures.get_distribution_statistics(
        test_data, mfts, **kwargs)
    _t1 += times

    ret = {
        'key': _key,
        'obj': mfts,
        'CRPS': _crps1,
        'time': _t1,
        'brier': _brier,
        'window': window_key,
        'steps': steps_ahead,
        'method': method
    }

    return ret