def process_interval_jobs(dataset, tag, job, conn): data = bUtil.process_common_data(dataset, tag, 'interval', job) sharpness = deepcopy(data) sharpness.extend(["sharpness", job["sharpness"]]) bUtil.insert_benchmark(sharpness, conn) resolution = deepcopy(data) resolution.extend(["resolution", job["resolution"]]) bUtil.insert_benchmark(resolution, conn) coverage = deepcopy(data) coverage.extend(["coverage", job["coverage"]]) bUtil.insert_benchmark(coverage, conn) time = deepcopy(data) time.extend(["time", job["time"]]) bUtil.insert_benchmark(time, conn) Q05 = deepcopy(data) Q05.extend(["Q05", job["Q05"]]) bUtil.insert_benchmark(Q05, conn) Q25 = deepcopy(data) Q25.extend(["Q25", job["Q25"]]) bUtil.insert_benchmark(Q25, conn) Q75 = deepcopy(data) Q75.extend(["Q75", job["Q75"]]) bUtil.insert_benchmark(Q75, conn) Q95 = deepcopy(data) Q95.extend(["Q95", job["Q95"]]) bUtil.insert_benchmark(Q95, conn) W05 = deepcopy(data) W05.extend(["winkler05", job["winkler05"]]) bUtil.insert_benchmark(W05, conn) W25 = deepcopy(data) W25.extend(["winkler25", job["winkler25"]]) bUtil.insert_benchmark(W25, conn)
def process_point_jobs(dataset, tag, job, conn): """ Extract information from a dictionary with point benchmark results and save it on a database :param dataset: the benchmark dataset name :param tag: alias for the benchmark group being executed :param job: a dictionary with the benchmark results :param conn: a connection to a Sqlite database :return: """ data = bUtil.process_common_data(dataset, tag, 'point',job) rmse = deepcopy(data) rmse.extend(["rmse", job["rmse"]]) bUtil.insert_benchmark(rmse, conn) smape = deepcopy(data) smape.extend(["smape", job["smape"]]) bUtil.insert_benchmark(smape, conn) u = deepcopy(data) u.extend(["u", job["u"]]) bUtil.insert_benchmark(u, conn) time = deepcopy(data) time.extend(["time", job["time"]]) bUtil.insert_benchmark(time, conn)
def process_probabilistic_jobs(dataset, tag, job, conn): data = bUtil.process_common_data(dataset, tag, 'density', job) crps = deepcopy(data) crps.extend(["crps", job["CRPS"]]) bUtil.insert_benchmark(crps, conn) time = deepcopy(data) time.extend(["time", job["time"]]) bUtil.insert_benchmark(time, conn) brier = deepcopy(data) brier.extend(["brier", job["brier"]]) bUtil.insert_benchmark(brier, conn)
def process_point_jobs(dataset, tag, job, conn): data = bUtil.process_common_data(dataset, tag, 'point', job) rmse = deepcopy(data) rmse.extend(["rmse", job["rmse"]]) bUtil.insert_benchmark(rmse, conn) smape = deepcopy(data) smape.extend(["smape", job["smape"]]) bUtil.insert_benchmark(smape, conn) u = deepcopy(data) u.extend(["u", job["u"]]) bUtil.insert_benchmark(u, conn) time = deepcopy(data) time.extend(["time", job["time"]]) bUtil.insert_benchmark(time, conn)
def process_interval_jobs(dataset, tag, job, conn): """ Extract information from an dictionary with interval benchmark results and save it on a database :param dataset: the benchmark dataset name :param tag: alias for the benchmark group being executed :param job: a dictionary with the benchmark results :param conn: a connection to a Sqlite database :return: """ data = bUtil.process_common_data(dataset, tag, 'interval', job) sharpness = deepcopy(data) sharpness.extend(["sharpness", job["sharpness"]]) bUtil.insert_benchmark(sharpness, conn) resolution = deepcopy(data) resolution.extend(["resolution", job["resolution"]]) bUtil.insert_benchmark(resolution, conn) coverage = deepcopy(data) coverage.extend(["coverage", job["coverage"]]) bUtil.insert_benchmark(coverage, conn) time = deepcopy(data) time.extend(["time", job["time"]]) bUtil.insert_benchmark(time, conn) Q05 = deepcopy(data) Q05.extend(["Q05", job["Q05"]]) bUtil.insert_benchmark(Q05, conn) Q25 = deepcopy(data) Q25.extend(["Q25", job["Q25"]]) bUtil.insert_benchmark(Q25, conn) Q75 = deepcopy(data) Q75.extend(["Q75", job["Q75"]]) bUtil.insert_benchmark(Q75, conn) Q95 = deepcopy(data) Q95.extend(["Q95", job["Q95"]]) bUtil.insert_benchmark(Q95, conn) W05 = deepcopy(data) W05.extend(["winkler05", job["winkler05"]]) bUtil.insert_benchmark(W05, conn) W25 = deepcopy(data) W25.extend(["winkler25", job["winkler25"]]) bUtil.insert_benchmark(W25, conn)
def process_probabilistic_jobs(dataset, tag, job, conn): """ Extract information from an dictionary with probabilistic benchmark results and save it on a database :param dataset: the benchmark dataset name :param tag: alias for the benchmark group being executed :param job: a dictionary with the benchmark results :param conn: a connection to a Sqlite database :return: """ data = bUtil.process_common_data(dataset, tag, 'density', job) crps = deepcopy(data) crps.extend(["crps",job["CRPS"]]) bUtil.insert_benchmark(crps, conn) time = deepcopy(data) time.extend(["time", job["time"]]) bUtil.insert_benchmark(time, conn) brier = deepcopy(data) brier.extend(["brier", job["brier"]]) bUtil.insert_benchmark(brier, conn)