def generateCorrelations(self,doDetrend=True):
     # auto correlation corefficient of u
     if doDetrend:
         ux=signal.detrend(self.ux());
         uy=signal.detrend(self.uy());
         uz=signal.detrend(self.uz());
         umag=signal.detrend(self.Umag());
     else:
         ux=self.ux();
         uy=self.uy();
         uz=self.uz();
         umag=self.Umag();
     #ux=ux[-samples:-1]
     #uy=uy[-samples:-1]
     #uz=uz[-samples:-1]
     self.data['r11'],self.data['taur11'] = tt.xcorr_fft(ux, maxlags=None, norm='coeff')
     self.data['r22'],self.data['taur22'] = tt.xcorr_fft(uy, maxlags=None, norm='coeff')
     self.data['r33'],self.data['taur33'] = tt.xcorr_fft(uz, maxlags=None, norm='coeff')
     self.data['r12'],self.data['taur12'] = tt.xcorr_fft(ux,y=uy, maxlags=None, norm='coeff')
     self.data['r13'],self.data['taur13'] = tt.xcorr_fft(ux,y=uz, maxlags=None, norm='coeff')
     self.data['r23'],self.data['taur23'] = tt.xcorr_fft(uy,y=uz, maxlags=None, norm='coeff')
     self.data['rmag'],self.data['taurmag'] = tt.xcorr_fft(umag, maxlags=None, norm='coeff')
     # auto correlation of u
     self.data['R11'],self.data['tauR11'] = tt.xcorr_fft(ux, maxlags=None, norm='biased')
     self.data['R22'],self.data['tauR22'] = tt.xcorr_fft(uy, maxlags=None, norm='biased')
     self.data['R33'],self.data['tauR33'] = tt.xcorr_fft(uz, maxlags=None, norm='biased')
Exemple #2
0
    def generateStatistics(self,doDetrend=True):
        '''
        Generates statistics and populates member variable data.

        Arguments:
            doDetrend: detrend data bevor sigbal processing

        Populates the "data" python dict with with the following keys:
            rii:    [numpy.array of shape=(?)] Auto-correlation coefficent rii. For i=1,2,3
            taurii: [numpy.array of shape=(?)] Time lags for rii. For i=1,2,3
            Rii:    [numpy.array of shape=(?)] Auto-correlation Rii. For i=1,2,3
            tauRii: [numpy.array of shape=(?)] Time lags for Rii. For i=1,2,3

            uifrq:  [numpy.array of shape=(?)] u1 in frequency domain. For i=1,2,3
            uiamp:  [numpy.array of shape=(?)] amplitude of u1 in frequency domain. For i=1,2,3
            Seiifrq:[numpy.array of shape=(?)] Frequencies for energy spectrum Seii. For i=1,2,3
            Seii:   [numpy.array of shape=(?)] Energy spectrum Seii derived from Rii. For i=1,2,3
        '''
        # auto correlation corefficient of u
        if doDetrend:
            ux=signal.detrend(self.ux());
            uy=signal.detrend(self.uy());
            uz=signal.detrend(self.uz());
            umag=signal.detrend(self.Umag());
        else:
            ux=self.ux();
            uy=self.uy();
            uz=self.uz();
            umag=self.Umag();
        #ux=ux[-samples:-1]
        #uy=uy[-samples:-1]
        #uz=uz[-samples:-1]
        self.data['r11'],self.data['taur11'] = tt.xcorr_fft(ux, maxlags=None, norm='coeff')
        self.data['r22'],self.data['taur22'] = tt.xcorr_fft(uy, maxlags=None, norm='coeff')
        self.data['r33'],self.data['taur33'] = tt.xcorr_fft(uz, maxlags=None, norm='coeff')
        self.data['r12'],self.data['taur12'] = tt.xcorr_fft(ux,y=uy, maxlags=None, norm='coeff')
        self.data['r13'],self.data['taur13'] = tt.xcorr_fft(ux,y=uz, maxlags=None, norm='coeff')
        self.data['r23'],self.data['taur23'] = tt.xcorr_fft(uy,y=uz, maxlags=None, norm='coeff')
        self.data['rmag'],self.data['taurmag'] = tt.xcorr_fft(umag, maxlags=None, norm='coeff')
        # auto correlation of u
        self.data['R11'],self.data['tauR11'] = tt.xcorr_fft(ux, maxlags=None, norm='none')
        self.data['R22'],self.data['tauR22'] = tt.xcorr_fft(uy, maxlags=None, norm='none')
        self.data['R33'],self.data['tauR33'] = tt.xcorr_fft(uz, maxlags=None, norm='none')


        #u in frequency domain
        self.data['u1frq'],self.data['u1amp'] = tt.dofft(sig=ux,samplefrq=self.data['frq'])
        self.data['u2frq'],self.data['u2amp'] = tt.dofft(sig=uy,samplefrq=self.data['frq'])
        self.data['u3frq'],self.data['u3amp'] = tt.dofft(sig=uz,samplefrq=self.data['frq'])
        #Time energy sectrum Se11 (mean: Rii in frequency domain...)
        self.data['Se11frq'],self.data['Se11'] = tt.dofft(sig=self.data['R11'],samplefrq=self.data['frq'])
        self.data['Se22frq'],self.data['Se22'] = tt.dofft(sig=self.data['R22'],samplefrq=self.data['frq'])
        self.data['Se33frq'],self.data['Se33'] = tt.dofft(sig=self.data['R33'],samplefrq=self.data['frq'])
    def generateAutoCorrelations(self,doDetrend=True):
        # auto correlation corefficient of u
        if doDetrend:
            ux=signal.detrend(self.ux());
            uy=signal.detrend(self.uy());
            uz=signal.detrend(self.uz());
        else:
            ux=self.ux();
            uy=self.uy();
            uz=self.uz();

        self.data['r11'],self.data['taur11'] = tt.xcorr_fft(ux, maxlags=None, norm='coeff')
        self.data['r22'],self.data['taur22'] = tt.xcorr_fft(uy, maxlags=None, norm='coeff')
        self.data['r33'],self.data['taur33'] = tt.xcorr_fft(uz, maxlags=None, norm='coeff')
Exemple #4
0
 def generateCorrelations(self, doDetrend=True):
     # auto correlation corefficient of u
     if doDetrend:
         ux = signal.detrend(self.ux())
         uy = signal.detrend(self.uy())
         uz = signal.detrend(self.uz())
         umag = signal.detrend(self.Umag())
     else:
         ux = self.ux()
         uy = self.uy()
         uz = self.uz()
         umag = self.Umag()
     #ux=ux[-samples:-1]
     #uy=uy[-samples:-1]
     #uz=uz[-samples:-1]
     self.data['r11'], self.data['taur11'] = tt.xcorr_fft(ux,
                                                          maxlags=None,
                                                          norm='coeff')
     self.data['r22'], self.data['taur22'] = tt.xcorr_fft(uy,
                                                          maxlags=None,
                                                          norm='coeff')
     self.data['r33'], self.data['taur33'] = tt.xcorr_fft(uz,
                                                          maxlags=None,
                                                          norm='coeff')
     self.data['r12'], self.data['taur12'] = tt.xcorr_fft(ux,
                                                          y=uy,
                                                          maxlags=None,
                                                          norm='coeff')
     self.data['r13'], self.data['taur13'] = tt.xcorr_fft(ux,
                                                          y=uz,
                                                          maxlags=None,
                                                          norm='coeff')
     self.data['r23'], self.data['taur23'] = tt.xcorr_fft(uy,
                                                          y=uz,
                                                          maxlags=None,
                                                          norm='coeff')
     self.data['rmag'], self.data['taurmag'] = tt.xcorr_fft(umag,
                                                            maxlags=None,
                                                            norm='coeff')
     # auto correlation of u
     self.data['R11'], self.data['tauR11'] = tt.xcorr_fft(ux,
                                                          maxlags=None,
                                                          norm='biased')
     self.data['R22'], self.data['tauR22'] = tt.xcorr_fft(uy,
                                                          maxlags=None,
                                                          norm='biased')
     self.data['R33'], self.data['tauR33'] = tt.xcorr_fft(uz,
                                                          maxlags=None,
                                                          norm='biased')
Exemple #5
0
    def generateAutoCorrelations(self, doDetrend=True):
        # auto correlation corefficient of u
        if doDetrend:
            ux = signal.detrend(self.ux())
            uy = signal.detrend(self.uy())
            uz = signal.detrend(self.uz())
        else:
            ux = self.ux()
            uy = self.uy()
            uz = self.uz()

        self.data['r11'], self.data['taur11'] = tt.xcorr_fft(ux,
                                                             maxlags=None,
                                                             norm='coeff')
        self.data['r22'], self.data['taur22'] = tt.xcorr_fft(uy,
                                                             maxlags=None,
                                                             norm='coeff')
        self.data['r33'], self.data['taur33'] = tt.xcorr_fft(uz,
                                                             maxlags=None,
                                                             norm='coeff')