def plot_random(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "No countermeasure" marker = '.' elif files[x] == 'cmp_AdditiveNoise.txt': label = "Additive noise" marker = "*" elif files[x] == 'cmp_Transfiguration.txt': label = "Transfiguration" marker = "o" elif files[x] == 'cmp_KAnonymity.txt': label = "K anonymity" marker = "^" elif files[x] == 'cmp_KClustering.txt': label = "K clustering" marker = "D" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label = label, marker = marker)
def plot(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'traddOff_KAnonymity.txt': title = "Trade-off bar of k anonymity" elif files[x] == 'traddOff_KClustering.txt': title = "Trade-off bar of k clustering" plt.figure() plt.bar([k - 0.25 for k in l[0]], pyf.normalize(l[1]), 0.5, color='g') plt.xticks(map(int, l[0])) plt.yticks([0.1 * i for i in range(1, 12)]) plt.title(title) plt.xlabel('k') plt.ylabel('IC') plt.tight_layout() # plt.show() plt.savefig(output + files[x].replace('txt', 'png'))
def plot(self, dataDir, plotDir, files): n = len(files) # number of bar pairs needed cmName = { 'NoCountermeasure': 'No countermeasure', 'AdditiveNoise': 'Additive noise', 'Transfiguration': 'Transfiguration', 'KAnonymity': 'K Anonymity', 'KClustering': 'K Clustering' } width = 0.35 pyf = PyFunctions() ic_random = [] # hold ic value of random queries ic_smart = [] # hold ic value of smart queries ctm = [] for x in range(len(files)): try: path = dataDir + 'cmp_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_random.append(avgl[len(avgl) - 1]) path = dataDir + 'cmp_smart_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_smart.append(avgl[len(avgl) - 1]) ctm.append(cmName[files[x]]) except Exception, e: continue
def plot_random(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "No countermeasure" marker = '.' elif files[x] == 'cmp_AdditiveNoise.txt': label = "Additive noise" marker = "*" elif files[x] == 'cmp_Transfiguration.txt': label = "Transfiguration" marker = "o" elif files[x] == 'cmp_KAnonymity.txt': label = "K anonymity" marker = "^" elif files[x] == 'cmp_KClustering.txt': label = "K clustering" marker = "D" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label=label, marker=marker)
def plot(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue plt.figure() l = [map(float, line.split()) for line in f] if files[x] == 'traddOff_smart_AdditiveNoise.txt': title = "Trade-off curve of additive noise with smart queries" xlabel = 'Noise level' elif files[x] == 'traddOff_smart_Transfiguration.txt': title = "Trade-off curve of transfiguration with smart queries" xlabel = 'Number of sides' plt.xticks(map(int, l[0])) plt.plot(l[0], pyf.normalize(l[1])) plt.legend() plt.title(title) plt.xlabel(xlabel) plt.ylabel('IC') plt.tight_layout() plt.savefig(output + files[x].replace('txt', 'png'))
def plot_random_smart(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "Random queries" marker = '.' elif files[x] == 'cmp_smart_NoCountermeasure.txt': label = "Smart qeuries" marker = "*" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label = label, marker = marker)
def plot_random_smart(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "Random queries" marker = '.' elif files[x] == 'cmp_smart_NoCountermeasure.txt': label = "Smart qeuries" marker = "*" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label=label, marker=marker)
def plot(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'traddOff_smart_KAnonymity.txt': title = "Trade-off bar of k anonymity with smart queries" elif files[x] == 'traddOff_smart_KClustering.txt': title = "Trade-off bar of k clustering with smart queries" plt.figure() plt.bar([k - 0.25 for k in l[0]], pyf.normalize(l[1]), 0.5, color = 'g') plt.xticks(map(int, l[0])) plt.yticks([0.1 * i for i in range(1, 12)]) plt.title(title) plt.xlabel('k') plt.ylabel('IC') plt.tight_layout() # plt.show() plt.savefig(output + files[x].replace('txt', 'png'))
def plot(self, dataDir, plotDir, files): n = len(files) # number of bar pairs needed cmName = {'NoCountermeasure': 'No countermeasure', 'AdditiveNoise': 'Additive noise', 'Transfiguration': 'Transfiguration', 'KAnonymity': 'K Anonymity', 'KClustering': 'K Clustering'} width = 0.35 pyf = PyFunctions() ic_random = [] # hold ic value of random queries ic_smart = [] # hold ic value of smart queries ctm = [] for x in range(len(files)): try: path = dataDir + 'cmp_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_random.append(avgl[len(avgl) - 1]) path = dataDir + 'cmp_smart_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_smart.append(avgl[len(avgl) - 1]) ctm.append(cmName[files[x]]) except Exception, e: continue