Exemple #1
0
    def _make_ts_cube(self, prefix, **kwargs):

        skywcs = kwargs.get('wcs', self.geom.wcs)
        npix = kwargs.get('npix', self.npix)

        galactic = wcs_utils.is_galactic(skywcs)
        ref_skydir = wcs_utils.wcs_to_skydir(skywcs)
        refdir = pyLike.SkyDir(ref_skydir.ra.deg, ref_skydir.dec.deg)
        pixsize = np.abs(skywcs.wcs.cdelt[0])

        skyproj = pyLike.FitScanner.buildSkyProj(str("AIT"), refdir, pixsize,
                                                 npix, galactic)

        src_dict = copy.deepcopy(kwargs.setdefault('model', {}))
        src_dict = {} if src_dict is None else src_dict

        xpix, ypix = (np.round(
            (self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.))
        skydir = wcs_utils.pix_to_skydir(xpix, ypix, skywcs)

        src_dict['ra'] = skydir.ra.deg
        src_dict['dec'] = skydir.dec.deg
        src_dict.setdefault('SpatialModel', 'PointSource')
        src_dict.setdefault('SpatialWidth', 0.3)
        src_dict.setdefault('Index', 2.0)
        src_dict.setdefault('Prefactor', 1E-13)
        src_dict['name'] = 'tscube_testsource'

        src = Source.create_from_dict(src_dict)

        modelname = utils.create_model_name(src)

        optFactory = pyLike.OptimizerFactory_instance()
        optObject = optFactory.create(str("MINUIT"),
                                      self.components[0].like.logLike)

        pylike_src = self.components[0]._create_source(src)
        fitScanner = pyLike.FitScanner(self.like.composite, optObject, skyproj,
                                       npix, npix)

        pylike_src.spectrum().normPar().setBounds(0, 1E6)

        fitScanner.setTestSource(pylike_src)

        self.logger.info("Running tscube")
        outfile = utils.format_filename(self.config['fileio']['workdir'],
                                        'tscube.fits',
                                        prefix=[prefix])

        try:
            fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'],
                                  kwargs['norm_sigma'], kwargs['cov_scale_bb'],
                                  kwargs['cov_scale'], kwargs['tol'],
                                  kwargs['max_iter'], kwargs['tol_type'],
                                  kwargs['remake_test_source'],
                                  kwargs['st_scan_level'], str(''),
                                  kwargs['init_lambda'])
        except Exception:
            fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'],
                                  kwargs['norm_sigma'], kwargs['cov_scale_bb'],
                                  kwargs['cov_scale'], kwargs['tol'],
                                  kwargs['max_iter'], kwargs['tol_type'],
                                  kwargs['remake_test_source'],
                                  kwargs['st_scan_level'])

        self.logger.info("Writing FITS output")

        fitScanner.writeFitsFile(str(outfile), str("gttscube"))

        convert_tscube(str(outfile), str(outfile))

        tscube = castro.TSCube.create_from_fits(outfile)
        ts_map = tscube.tsmap
        norm_map = tscube.normmap
        npred_map = copy.deepcopy(norm_map)
        npred_map.data *= tscube.refSpec.ref_npred.sum()
        amp_map = copy.deepcopy(norm_map)
        amp_map.data *= src_dict['Prefactor']

        sqrt_ts_map = copy.deepcopy(ts_map)
        sqrt_ts_map.data[...] = np.abs(sqrt_ts_map.data)**0.5

        o = {
            'name': utils.join_strings([prefix, modelname]),
            'src_dict': copy.deepcopy(src_dict),
            'file': os.path.basename(outfile),
            'ts': ts_map,
            'sqrt_ts': sqrt_ts_map,
            'npred': npred_map,
            'amplitude': amp_map,
            'config': kwargs,
            'tscube': tscube
        }

        if not kwargs['write_fits']:
            os.remove(outfile)
            os['file'] = None

        self.logger.info("Done")
        return o
Exemple #2
0
    def _make_ts_cube(self, prefix, **kwargs):

        map_skydir = kwargs.get('map_skydir')
        map_size = kwargs.get('map_size')
        exclude = kwargs.get('exclude', [])

        # We take the coordinate system and the bin size from the underlying map
        skywcs = self._geom.wcs
        galactic = wcs_utils.is_galactic(skywcs)
        pixsize = max(np.abs(skywcs.wcs.cdelt))

        # If the map_size is not specified we need to find the right number of pixels
        if map_size is None:
            npix = max(self._geom.npix)[0]
            map_size = pixsize * npix
        else:
            npix = int(np.round(map_size / pixsize))

        saved_state = LikelihoodState(self.like)

        for ex_src in exclude:
            self.zero_source(ex_src)

        if map_skydir is None:
            # Take the center of the wcs
            map_geom = self._geom.to_image()
            frame = coordsys_to_frame(map_geom.coordsys)
            map_skydir = SkyCoord(*map_geom.pix_to_coord(
                self._geom.wcs.wcs.crpix),
                                  frame=frame,
                                  unit='deg')
            map_skydir = map_skydir.transform_to('icrs')

        refdir = pyLike.SkyDir(map_skydir.ra.deg, map_skydir.dec.deg)

        src_dict = copy.deepcopy(kwargs.setdefault('model', {}))
        src_dict = {} if src_dict is None else src_dict

        src_dict['ra'] = map_skydir.ra.deg
        src_dict['dec'] = map_skydir.dec.deg
        src_dict.setdefault('SpatialModel', 'PointSource')
        src_dict.setdefault('SpatialWidth', 0.3)
        src_dict.setdefault('Index', 2.0)
        src_dict.setdefault('Prefactor', 1.0)
        src_dict['name'] = 'tscube_testsource'

        src = Source.create_from_dict(src_dict)
        if 'Prefactor' in src.spectral_pars:
            src.spectral_pars['Prefactor']['scale'] = 1.0e-10

        modelname = utils.create_model_name(src)
        pylike_src = self.components[0]._create_source(src)
        pylike_src.spectrum().normPar().setBounds(0, 1E6)

        skyproj = pyLike.FitScanner.buildSkyProj(str("AIT"), refdir, pixsize,
                                                 npix, galactic)

        optFactory = pyLike.OptimizerFactory_instance()
        optObject = optFactory.create(str("MINUIT"), self.like.composite)

        fitScanner = pyLike.FitScanner(self.like.composite, optObject, skyproj,
                                       npix, npix)
        fitScanner.set_quiet(True)
        fitScanner.setTestSource(pylike_src)

        self.logger.info("Running tscube")
        outfile = utils.format_filename(self.config['fileio']['workdir'],
                                        'tscube.fits',
                                        prefix=[prefix])

        fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'],
                              kwargs['norm_sigma'], kwargs['cov_scale_bb'],
                              kwargs['cov_scale'], kwargs['tol'],
                              kwargs['max_iter'], kwargs['tol_type'],
                              kwargs['remake_test_source'],
                              kwargs['st_scan_level'], str(''),
                              kwargs['init_lambda'])

        self.logger.info("Writing FITS output")

        fitScanner.writeFitsFile(str(outfile), str("gttscube"), "", False,
                                 pyLike.FitScanner.TSMAP_ONLY)
        saved_state.restore()

        convert_tscube(str(outfile), str(outfile))

        tscube = castro.TSCube.create_from_fits(outfile)
        ts_map = tscube.tsmap
        norm_map = tscube.normmap
        npred_map = copy.deepcopy(norm_map)
        npred_map.data *= tscube.refSpec.ref_npred.sum()
        amp_map = copy.deepcopy(norm_map)
        amp_map.data *= pylike_src.spectrum().normPar().getValue()
        sqrt_ts_map = copy.deepcopy(ts_map)
        sqrt_ts_map.data[...] = np.abs(sqrt_ts_map.data)**0.5

        o = {
            'name': utils.join_strings([prefix, modelname]),
            'src_dict': copy.deepcopy(src_dict),
            'file': os.path.basename(outfile),
            'ts': ts_map,
            'sqrt_ts': sqrt_ts_map,
            'npred': npred_map,
            'amplitude': amp_map,
            'config': kwargs,
            'tscube': tscube
        }

        if not kwargs['write_fits']:
            os.remove(outfile)
            o['file'] = None

        self.logger.info("Done")
        return o