Exemple #1
0
def test(spikeTimes, trained_weights, label):

    #spikeTimes = extractSpikes(sample)
    runTime = int(max(max(spikeTimes))) + 100

    ##########################################

    sim.setup(timestep=1)

    pre_pop = sim.Population(input_size,
                             sim.SpikeSourceArray, {'spike_times': spikeTimes},
                             label="pre_pop")
    post_pop = sim.Population(output_size,
                              sim.IF_curr_exp,
                              cell_params_lif,
                              label="post_pop")
    '''
    if len(untrained_weights)>input_size:
        training_weights = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25
        k=0
        for i in untrained_weights:
            training_weights[i[0]][i[1]]=i[2]
    '''
    if len(trained_weights) > input_size:
        weigths = [[0 for j in range(output_size)]
                   for i in range(input_size)]  #np array? size 1024x25
        k = 0
        for i in range(input_size):
            for j in range(output_size):
                weigths[i][j] = trained_weights[k]
                k += 1
    else:
        weigths = trained_weights

    connections = []

    #k = 0
    for n_pre in range(input_size):  # len(untrained_weights) = input_size
        for n_post in range(
                output_size
        ):  # len(untrained_weight[0]) = output_size; 0 or any n_pre
            #connections.append((n_pre, n_post, weigths[n_pre][n_post]*(wMax), __delay__))
            connections.append((n_pre, n_post, weigths[n_pre][n_post] *
                                (wMax) / max(trained_weights), __delay__))  #
            #k += 1

    prepost_proj = sim.Projection(
        pre_pop,
        post_pop,
        sim.FromListConnector(connections),
        synapse_type=sim.StaticSynapse(),
        receptor_type='excitatory')  # no more learning !!
    #inhib_proj = sim.Projection(post_pop, post_pop, sim.AllToAllConnector(), synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), receptor_type='inhibitory')
    # no more lateral inhib

    post_pop.record(['v', 'spikes'])
    sim.run(runTime)

    neo = post_pop.get_data(['v', 'spikes'])
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    f1 = pplt.Figure(
        # plot voltage
        pplt.Panel(v,
                   ylabel="Membrane potential (mV)",
                   xticks=True,
                   yticks=True,
                   xlim=(0, runTime + 100)),
        # raster plot
        pplt.Panel(spikes,
                   xlabel="Time (ms)",
                   xticks=True,
                   yticks=True,
                   markersize=2,
                   xlim=(0, runTime + 100)),
        title='Test with label ' + str(label),
        annotations='Test with label ' + str(label))
    f1.save('plot/' + str(trylabel) + str(label) + '_test.png')
    f1.fig.texts = []
    print("Weights:{}".format(prepost_proj.get('weight', 'list')))

    weight_list = [
        prepost_proj.get('weight', 'list'),
        prepost_proj.get('weight', format='list', with_address=False)
    ]
    #predict_label=
    sim.end()
    return spikes
Exemple #2
0
def train(label, untrained_weights=None):
    organisedStim = {}
    labelSpikes = []
    spikeTimes = generate_data(label)

    for i in range(output_size):
        labelSpikes.append([])
    labelSpikes[label] = [int(max(max(spikeTimes))) + 1]

    if untrained_weights == None:
        untrained_weights = RandomDistribution('uniform',
                                               low=wMin,
                                               high=wMaxInit).next(input_size *
                                                                   output_size)
        #untrained_weights = RandomDistribution('normal_clipped', mu=0.1, sigma=0.05, low=wMin, high=wMaxInit).next(input_size*output_size)
        untrained_weights = np.around(untrained_weights, 3)
        #saveWeights(untrained_weights, 'untrained_weightssupmodel1traj')
        print("init!")

    print "length untrained_weights :", len(untrained_weights)

    if len(untrained_weights) > input_size:
        training_weights = [[0 for j in range(output_size)]
                            for i in range(input_size)
                            ]  #np array? size 1024x25
        k = 0
        #for i in untrained_weights:
        #    training_weights[i[0]][i[1]]=i[2]
        for i in range(input_size):
            for j in range(output_size):
                training_weights[i][j] = untrained_weights[k]
                k += 1
    else:
        training_weights = untrained_weights

    connections = []
    for n_pre in range(input_size):  # len(untrained_weights) = input_size
        for n_post in range(
                output_size
        ):  # len(untrained_weight[0]) = output_size; 0 or any n_pre
            connections.append((n_pre, n_post, training_weights[n_pre][n_post],
                                __delay__))  #index
    runTime = int(max(max(spikeTimes))) + 100
    #####################
    sim.setup(timestep=1)
    #def populations
    layer1 = sim.Population(input_size,
                            sim.SpikeSourceArray, {'spike_times': spikeTimes},
                            label='inputspikes')
    layer2 = sim.Population(output_size,
                            sim.IF_curr_exp,
                            cellparams=cell_params_lif,
                            label='outputspikes')
    supsignal = sim.Population(output_size,
                               sim.SpikeSourceArray,
                               {'spike_times': labelSpikes},
                               label='supersignal')

    #def learning rule
    stdp = sim.STDPMechanism(
        #weight=untrained_weights,
        #weight=0.02,  # this is the initial value of the weight
        #delay="0.2 + 0.01*d",
        timing_dependence=sim.SpikePairRule(tau_plus=tauPlus,
                                            tau_minus=tauMinus,
                                            A_plus=aPlus,
                                            A_minus=aMinus),
        #weight_dependence=sim.MultiplicativeWeightDependence(w_min=wMin, w_max=wMax),
        weight_dependence=sim.AdditiveWeightDependence(w_min=wMin, w_max=wMax),
        dendritic_delay_fraction=0)
    #def projections

    stdp_proj = sim.Projection(layer1,
                               layer2,
                               sim.FromListConnector(connections),
                               synapse_type=stdp)
    inhibitory_connections = sim.Projection(
        layer2,
        layer2,
        sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__),
        receptor_type='inhibitory')
    stim_proj = sim.Projection(supsignal,
                               layer2,
                               sim.OneToOneConnector(),
                               synapse_type=sim.StaticSynapse(
                                   weight=stimWeight, delay=__delay__))

    layer1.record(['spikes'])

    layer2.record(['v', 'spikes'])
    supsignal.record(['spikes'])
    sim.run(runTime)

    print("Weights:{}".format(stdp_proj.get('weight', 'list')))

    weight_list = [
        stdp_proj.get('weight', 'list'),
        stdp_proj.get('weight', format='list', with_address=False)
    ]
    neo = layer2.get_data(["spikes", "v"])
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    neostim = supsignal.get_data(["spikes"])
    print(label)
    spikestim = neostim.segments[0].spiketrains
    neoinput = layer1.get_data(["spikes"])
    spikesinput = neoinput.segments[0].spiketrains

    plt.close('all')
    pplt.Figure(pplt.Panel(v,
                           ylabel="Membrane potential (mV)",
                           xticks=True,
                           yticks=True,
                           xlim=(0, runTime)),
                pplt.Panel(spikesinput,
                           xticks=True,
                           yticks=True,
                           markersize=2,
                           xlim=(0, runTime)),
                pplt.Panel(spikestim,
                           xticks=True,
                           yticks=True,
                           markersize=2,
                           xlim=(0, runTime)),
                pplt.Panel(spikes,
                           xticks=True,
                           xlabel="Time (ms)",
                           yticks=True,
                           markersize=2,
                           xlim=(0, runTime)),
                title="Training" + str(label),
                annotations="Training" +
                str(label)).save('plot/' + str(trylabel) + str(label) +
                                 '_training.png')
    #plt.hist(weight_list[1], bins=100)
    #plt.show()
    plt.close('all')
    print(wMax)
    '''
    plt.hist([weight_list[1][0:input_size], weight_list[1][input_size:input_size*2], weight_list[1][input_size*2:]], bins=20, label=['neuron 0', 'neuron 1', 'neuron 2'], range=(0, wMax))
    plt.title('weight distribution')
    plt.xlabel('Weight value')
    plt.ylabel('Weight count')
    '''
    #plt.show()
    #plt.show()

    sim.end()
    for i in weight_list[0]:
        #training_weights[int(i[0])][int(i[1])]=float(i[2])
        weight_list[1][int(i[0]) * output_size + int(i[1])] = i[2]
    return weight_list[1]
#connects each pre-synaptic neuron to exactly n post-synaptic neurons chosen at random
connector = sim.FixedNumberPostConnector(n=30)

distr_npost = RandomDistribution(distribution='binomial', n=100, p=0.3)
connector = sim.FixedNumberPostConnector(n=distr_npost)

#Divergent/fan-in connections
#connects each post-synaptic neuron to n pre-synaptic neurons
connector = sim.FixedNumberPreConnector(5)
distr_npre = RandomDistribution(distribution='poisson', lambda_=5)
connector = sim.FixedNumberPreConnector(distr_npre)

#Specifying a list of connections
connections = [(0, 0, 0.0, 0.1), (0, 1, 0.0, 0.1), (0, 2, 0.0, 0.1),
               (1, 5, 0.0, 0.1)]
connector = sim.FromListConnector(connections,
                                  column_names=["weight", "delay"])

#Specifying an explicit connection matrix
connections = np.array([[0, 1, 1, 0], [1, 1, 0, 1], [0, 0, 1, 0]], dtype=bool)
connector = sim.ArrayConnector(connections)
'''
Projections
'''
'''
cell types
'''
#brian.list_standard_models()
#refractory_period = RandomDistribution('uniform', [2.0, 3.0], rng=NumpyRNG(seed=4242))
#Brian does not support heterogenerous refractory periods with CustomRefractoriness
ctx_parameters={'cm': 0.25, 'tau_m': 20.0, 'v_rest': -60, 'v_thresh': -50, \
'tau_refrac': 3.0,'v_reset': -60, 'v_spike': -50.0, 'a': 1.0, \