def test(spikeTimes, trained_weights, label): #spikeTimes = extractSpikes(sample) runTime = int(max(max(spikeTimes))) + 100 ########################################## sim.setup(timestep=1) pre_pop = sim.Population(input_size, sim.SpikeSourceArray, {'spike_times': spikeTimes}, label="pre_pop") post_pop = sim.Population(output_size, sim.IF_curr_exp, cell_params_lif, label="post_pop") ''' if len(untrained_weights)>input_size: training_weights = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25 k=0 for i in untrained_weights: training_weights[i[0]][i[1]]=i[2] ''' if len(trained_weights) > input_size: weigths = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25 k = 0 for i in range(input_size): for j in range(output_size): weigths[i][j] = trained_weights[k] k += 1 else: weigths = trained_weights connections = [] #k = 0 for n_pre in range(input_size): # len(untrained_weights) = input_size for n_post in range( output_size ): # len(untrained_weight[0]) = output_size; 0 or any n_pre #connections.append((n_pre, n_post, weigths[n_pre][n_post]*(wMax), __delay__)) connections.append((n_pre, n_post, weigths[n_pre][n_post] * (wMax) / max(trained_weights), __delay__)) # #k += 1 prepost_proj = sim.Projection( pre_pop, post_pop, sim.FromListConnector(connections), synapse_type=sim.StaticSynapse(), receptor_type='excitatory') # no more learning !! #inhib_proj = sim.Projection(post_pop, post_pop, sim.AllToAllConnector(), synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), receptor_type='inhibitory') # no more lateral inhib post_pop.record(['v', 'spikes']) sim.run(runTime) neo = post_pop.get_data(['v', 'spikes']) spikes = neo.segments[0].spiketrains v = neo.segments[0].filter(name='v')[0] f1 = pplt.Figure( # plot voltage pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0, runTime + 100)), # raster plot pplt.Panel(spikes, xlabel="Time (ms)", xticks=True, yticks=True, markersize=2, xlim=(0, runTime + 100)), title='Test with label ' + str(label), annotations='Test with label ' + str(label)) f1.save('plot/' + str(trylabel) + str(label) + '_test.png') f1.fig.texts = [] print("Weights:{}".format(prepost_proj.get('weight', 'list'))) weight_list = [ prepost_proj.get('weight', 'list'), prepost_proj.get('weight', format='list', with_address=False) ] #predict_label= sim.end() return spikes
def train(label, untrained_weights=None): organisedStim = {} labelSpikes = [] spikeTimes = generate_data(label) for i in range(output_size): labelSpikes.append([]) labelSpikes[label] = [int(max(max(spikeTimes))) + 1] if untrained_weights == None: untrained_weights = RandomDistribution('uniform', low=wMin, high=wMaxInit).next(input_size * output_size) #untrained_weights = RandomDistribution('normal_clipped', mu=0.1, sigma=0.05, low=wMin, high=wMaxInit).next(input_size*output_size) untrained_weights = np.around(untrained_weights, 3) #saveWeights(untrained_weights, 'untrained_weightssupmodel1traj') print("init!") print "length untrained_weights :", len(untrained_weights) if len(untrained_weights) > input_size: training_weights = [[0 for j in range(output_size)] for i in range(input_size) ] #np array? size 1024x25 k = 0 #for i in untrained_weights: # training_weights[i[0]][i[1]]=i[2] for i in range(input_size): for j in range(output_size): training_weights[i][j] = untrained_weights[k] k += 1 else: training_weights = untrained_weights connections = [] for n_pre in range(input_size): # len(untrained_weights) = input_size for n_post in range( output_size ): # len(untrained_weight[0]) = output_size; 0 or any n_pre connections.append((n_pre, n_post, training_weights[n_pre][n_post], __delay__)) #index runTime = int(max(max(spikeTimes))) + 100 ##################### sim.setup(timestep=1) #def populations layer1 = sim.Population(input_size, sim.SpikeSourceArray, {'spike_times': spikeTimes}, label='inputspikes') layer2 = sim.Population(output_size, sim.IF_curr_exp, cellparams=cell_params_lif, label='outputspikes') supsignal = sim.Population(output_size, sim.SpikeSourceArray, {'spike_times': labelSpikes}, label='supersignal') #def learning rule stdp = sim.STDPMechanism( #weight=untrained_weights, #weight=0.02, # this is the initial value of the weight #delay="0.2 + 0.01*d", timing_dependence=sim.SpikePairRule(tau_plus=tauPlus, tau_minus=tauMinus, A_plus=aPlus, A_minus=aMinus), #weight_dependence=sim.MultiplicativeWeightDependence(w_min=wMin, w_max=wMax), weight_dependence=sim.AdditiveWeightDependence(w_min=wMin, w_max=wMax), dendritic_delay_fraction=0) #def projections stdp_proj = sim.Projection(layer1, layer2, sim.FromListConnector(connections), synapse_type=stdp) inhibitory_connections = sim.Projection( layer2, layer2, sim.AllToAllConnector(allow_self_connections=False), synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), receptor_type='inhibitory') stim_proj = sim.Projection(supsignal, layer2, sim.OneToOneConnector(), synapse_type=sim.StaticSynapse( weight=stimWeight, delay=__delay__)) layer1.record(['spikes']) layer2.record(['v', 'spikes']) supsignal.record(['spikes']) sim.run(runTime) print("Weights:{}".format(stdp_proj.get('weight', 'list'))) weight_list = [ stdp_proj.get('weight', 'list'), stdp_proj.get('weight', format='list', with_address=False) ] neo = layer2.get_data(["spikes", "v"]) spikes = neo.segments[0].spiketrains v = neo.segments[0].filter(name='v')[0] neostim = supsignal.get_data(["spikes"]) print(label) spikestim = neostim.segments[0].spiketrains neoinput = layer1.get_data(["spikes"]) spikesinput = neoinput.segments[0].spiketrains plt.close('all') pplt.Figure(pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0, runTime)), pplt.Panel(spikesinput, xticks=True, yticks=True, markersize=2, xlim=(0, runTime)), pplt.Panel(spikestim, xticks=True, yticks=True, markersize=2, xlim=(0, runTime)), pplt.Panel(spikes, xticks=True, xlabel="Time (ms)", yticks=True, markersize=2, xlim=(0, runTime)), title="Training" + str(label), annotations="Training" + str(label)).save('plot/' + str(trylabel) + str(label) + '_training.png') #plt.hist(weight_list[1], bins=100) #plt.show() plt.close('all') print(wMax) ''' plt.hist([weight_list[1][0:input_size], weight_list[1][input_size:input_size*2], weight_list[1][input_size*2:]], bins=20, label=['neuron 0', 'neuron 1', 'neuron 2'], range=(0, wMax)) plt.title('weight distribution') plt.xlabel('Weight value') plt.ylabel('Weight count') ''' #plt.show() #plt.show() sim.end() for i in weight_list[0]: #training_weights[int(i[0])][int(i[1])]=float(i[2]) weight_list[1][int(i[0]) * output_size + int(i[1])] = i[2] return weight_list[1]
#connects each pre-synaptic neuron to exactly n post-synaptic neurons chosen at random connector = sim.FixedNumberPostConnector(n=30) distr_npost = RandomDistribution(distribution='binomial', n=100, p=0.3) connector = sim.FixedNumberPostConnector(n=distr_npost) #Divergent/fan-in connections #connects each post-synaptic neuron to n pre-synaptic neurons connector = sim.FixedNumberPreConnector(5) distr_npre = RandomDistribution(distribution='poisson', lambda_=5) connector = sim.FixedNumberPreConnector(distr_npre) #Specifying a list of connections connections = [(0, 0, 0.0, 0.1), (0, 1, 0.0, 0.1), (0, 2, 0.0, 0.1), (1, 5, 0.0, 0.1)] connector = sim.FromListConnector(connections, column_names=["weight", "delay"]) #Specifying an explicit connection matrix connections = np.array([[0, 1, 1, 0], [1, 1, 0, 1], [0, 0, 1, 0]], dtype=bool) connector = sim.ArrayConnector(connections) ''' Projections ''' ''' cell types ''' #brian.list_standard_models() #refractory_period = RandomDistribution('uniform', [2.0, 3.0], rng=NumpyRNG(seed=4242)) #Brian does not support heterogenerous refractory periods with CustomRefractoriness ctx_parameters={'cm': 0.25, 'tau_m': 20.0, 'v_rest': -60, 'v_thresh': -50, \ 'tau_refrac': 3.0,'v_reset': -60, 'v_spike': -50.0, 'a': 1.0, \