def test_columnwise_iteration_with_function(): input = lambda i, j: 2 * i + j m = LazyArray(input, shape=(4, 3)) cols = [col for col in m.by_column()] assert_array_equal(cols[0], np.array([0, 2, 4, 6])) assert_array_equal(cols[1], np.array([1, 3, 5, 7])) assert_array_equal(cols[2], np.array([2, 4, 6, 8]))
def test_columnwise_iteration_with_structured_array_and_mask(): input = np.arange(12).reshape((4, 3)) m = LazyArray(input, shape=(4, 3)) # 4 rows, 3 columns mask = np.array([False, True, True]) cols = [col for col in m.by_column(mask=mask)] assert_array_equal(cols[0], input[:, 1]) assert_array_equal(cols[1], input[:, 2])
def test_evaluate_with_functional_array(): input = lambda i,j: 2*i + j m = LazyArray(input, shape=(4,3)) assert_array_equal(m.evaluate(), np.array([[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]))
def test_multiple_operations_with_structured_array(): input = np.arange(12).reshape((4, 3)) m0 = LazyArray(input, shape=(4, 3)) m1 = (m0 + 2) < 5 m2 = (m0 < 5) + 2 assert_array_equal(m1.evaluate(simplify=True), (input + 2) < 5) assert_array_equal(m2.evaluate(simplify=True), (input < 5) + 2) assert_array_equal(m0.evaluate(simplify=True), input)
def test_columnwise_iteration_with_random_array_parallel_safe_no_mask(): random.mpi_rank=0; random.num_processes=2 input = random.RandomDistribution(rng=MockRNG(parallel_safe=True)) copy_input = random.RandomDistribution(rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4,3)) cols = [col for col in m.by_column()] assert_array_equal(cols[0], copy_input.next(4, mask_local=False)) assert_array_equal(cols[1], copy_input.next(4, mask_local=False)) assert_array_equal(cols[2], copy_input.next(4, mask_local=False))
def test_columnwise_iteration_with_random_array_parallel_safe_with_mask(): random.mpi_rank=0; random.num_processes=2 input = random.RandomDistribution(rng=MockRNG(parallel_safe=True)) copy_input = random.RandomDistribution(rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4,3)) mask = np.array([False, False, True]) cols = [col for col in m.by_column(mask=mask)] assert_equal(len(cols), 1) assert_array_almost_equal(cols[0], copy_input.next(12, mask_local=False)[8:], 15)
def test_columnwise_iteration_with_random_array_parallel_safe_with_mask(): orig_get_mpi_config = random.get_mpi_config random.get_mpi_config = lambda: (0, 2) input = random.RandomDistribution("uniform", (0, 1), rng=MockRNG(parallel_safe=True)) copy_input = random.RandomDistribution("gamma", (2, 3), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) mask = np.array([False, False, True]) cols = [col for col in m.by_column(mask=mask)] assert_equal(len(cols), 1) assert_array_almost_equal(cols[0], copy_input.next(12, mask_local=False)[8:], 15) random.get_mpi_config = orig_get_mpi_config
def test_columnwise_iteration_with_random_array_parallel_safe_no_mask(): orig_get_mpi_config = random.get_mpi_config random.get_mpi_config = lambda: (0, 2) input = random.RandomDistribution("uniform", (0, 1), rng=MockRNG(parallel_safe=True)) copy_input = random.RandomDistribution("normal", (0, 1), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) cols = [col for col in m.by_column()] assert_array_equal(cols[0], copy_input.next(4, mask_local=False)) assert_array_equal(cols[1], copy_input.next(4, mask_local=False)) assert_array_equal(cols[2], copy_input.next(4, mask_local=False)) random.get_mpi_config = orig_get_mpi_config
def test_columnwise_iteration_with_random_array_parallel_safe_no_mask(): orig_get_mpi_config = random.get_mpi_config # first, with a single MPI node random.get_mpi_config = lambda: (0, 2) input = random.RandomDistribution('uniform', (0, 1), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) cols_np1 = [col for col in m.by_column()] # now, on one node of two random.get_mpi_config = lambda: (1, 2) input = random.RandomDistribution('uniform', (0, 1), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) cols_np2_1 = [col for col in m.by_column()] for i in range(3): assert_array_equal(cols_np1[i], cols_np2_1[i]) random.get_mpi_config = orig_get_mpi_config
def test_columnwise_iteration_with_random_array_parallel_safe_with_mask(): orig_get_mpi_config = random.get_mpi_config mask = np.array([False, False, True]) # first, with a single MPI node random.get_mpi_config = lambda: (0, 2) input = random.RandomDistribution('uniform', (0, 1), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) cols_np1 = [col for col in m.by_column(mask=mask)] # now, on one node of two random.get_mpi_config = lambda: (0, 2) input = random.RandomDistribution('uniform', (0, 1), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) cols_np2_0 = [col for col in m.by_column(mask=mask)] # now, on the other node of two random.get_mpi_config = lambda: (1, 2) input = random.RandomDistribution('uniform', (0, 1), rng=MockRNG(parallel_safe=True)) m = LazyArray(input, shape=(4, 3)) cols_np2_1 = [col for col in m.by_column(mask=mask)] assert_equal(len(cols_np1), 1) assert_equal(len(cols_np2_0), 1) assert_equal(len(cols_np2_1), 1) assert_array_equal(cols_np1[0], cols_np2_0[0]) random.get_mpi_config = orig_get_mpi_config
def connect(self, projection): """Connect-up a Projection.""" connection_map = LazyArray(lambda i, j: i == j, shape=projection.shape) self._connect_with_map(projection, connection_map)
def test_iadd_with_flat_array(): m = LazyArray(5, shape=(4, 3)) m += 2 assert_array_equal(m.evaluate(), 7 * np.ones((4, 3))) assert_equal(m.base_value, 5) assert_equal(m.evaluate(simplify=True), 7)
def test_add_incommensurate_arrays(): m0 = LazyArray(5, shape=(4, 3)) m1 = LazyArray(7, shape=(5, 3)) assert_raises(ValueError, m0.__add__, m1)
def _generate_distance_map(self, projection): position_generators = (projection.pre.position_generator, projection.post.position_generator) return LazyArray( projection.space.distance_generator(*position_generators), shape=projection.shape)
def test_evaluate_with_structured_array(): input = np.arange(12).reshape((4, 3)) m = LazyArray(input, shape=(4, 3)) assert_array_equal(m.evaluate(), input)
def test_lt_with_flat_array(): m0 = LazyArray(5, shape=(4, 3)) m1 = m0 < 10 assert_equal(m1.evaluate(simplify=True), True) assert_equal(m0.evaluate(simplify=True), 5)
def test_setitem_nonexpanded_same_value(): A = LazyArray(3, shape=(5,)) assert A.evaluate(simplify=True) == 3 A[0] = 3 assert A.evaluate(simplify=True) == 3
def _connection_map(self): return LazyArray(~numpy.isnan( self._prev_connected.get(['weight'], 'array', gather='all')[0]))
def test_create_with_invalid_string(): A = LazyArray("d+2", shape=3)
def test_create_with_float(): A = LazyArray(3.0, shape=(5,)) assert A.shape == (5,) assert A.evaluate(simplify=True) == 3.0
def test_create_with_array(): A = LazyArray(np.array([1, 2, 3]), shape=(3, )) assert A.shape == (3, ) assert_array_equal(A.evaluate(simplify=True), np.array([1, 2, 3]))
def test_create_with_float(): A = LazyArray(3.0, shape=(5, )) assert A.shape == (5, ) assert A.evaluate(simplify=True) == 3.0
def test_getitem_from_constant_array(): m = LazyArray(3 * np.ones((4, 3)), shape=(4, 3)) assert m[0, 0] == m[3, 2] == m[-1, 2] == m[-4, 2] == m[2, -3] == 3 assert_raises(IndexError, m.__getitem__, (4, 0)) assert_raises(IndexError, m.__getitem__, (2, -4))
def test_columnwise_iteration_with_flat_array_and_mask(): m = LazyArray(5, shape=(4, 3)) # 4 rows, 3 columns mask = np.array([True, False, True]) cols = [col for col in m.by_column(mask=mask)] assert_equal(cols, [5, 5])
def test_columnwise_iteration_with_flat_array(): m = LazyArray(5, shape=(4, 3)) # 4 rows, 3 columns cols = [col for col in m.by_column()] assert_equal(cols, [5, 5, 5])
def test_evaluate_with_functional_array(): input = lambda i, j: 2 * i + j m = LazyArray(input, shape=(4, 3)) assert_array_equal(m.evaluate(), np.array([[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]))
def test_lt_with_structured_array(): input = np.arange(12).reshape((4, 3)) m0 = LazyArray(input, shape=(4, 3)) m1 = m0 < 5 assert_array_equal(m1.evaluate(simplify=True), input < 5)
def test_evaluate_with_flat_array(): m = LazyArray(5, shape=(4, 3)) assert_array_equal(m.evaluate(), 5 * np.ones((4, 3)))
def test_setitem_nonexpanded_same_value(): A = LazyArray(3, shape=(5, )) assert A.evaluate(simplify=True) == 3 A[0] = 3 assert A.evaluate(simplify=True) == 3
def test_structured_array_lt_array(): input = np.arange(12).reshape((4, 3)) m0 = LazyArray(input, shape=(4, 3)) comparison = 5 * np.ones((4, 3)) m1 = m0 < comparison assert_array_equal(m1.evaluate(simplify=True), input < comparison)
def test_create_with_array(): A = LazyArray(np.array([1, 2, 3]), shape=(3,)) assert A.shape == (3,) assert_array_equal(A.evaluate(simplify=True), np.array([1, 2, 3]))
def test_setitem_invalid_value(): A = LazyArray(3, shape=(5, )) assert_raises(TypeError, A.__setitem__, "abc")
def test_setitem_nonexpanded_different_value(): A = LazyArray(3, shape=(5,)) assert A.evaluate(simplify=True) == 3 A[0] = 4 A[4] = 5 assert_array_equal(A.evaluate(simplify=True), np.array([4, 3, 3, 3, 5]))
def test_setitem_nonexpanded_different_value(): A = LazyArray(3, shape=(5, )) assert A.evaluate(simplify=True) == 3 A[0] = 4 A[4] = 5 assert_array_equal(A.evaluate(simplify=True), np.array([4, 3, 3, 3, 5]))
def test_columnwise_iteration_with_structured_array(): input = np.arange(12).reshape((4, 3)) m = LazyArray(input, shape=(4, 3)) # 4 rows, 3 columns cols = [col for col in m.by_column()] assert_array_equal(cols[0], input[:, 0]) assert_array_equal(cols[2], input[:, 2])
def connect(self, projection): connection_map = LazyArray(self.array, projection.shape) self._connect_with_map(projection, connection_map)