# plasticity

wdep_grcpcsynapsis = p.AdditiveWeightDependence(w_min=0.0,
                                                w_max=0.5,
                                                A_plus=0.0015,
                                                A_minus=0.0018)
tdep_grcpcsynapsis = p.SpikePairRuleSinAdd(tau_minus=50.,
                                           tau_plus=50.,
                                           delay=100.0,
                                           nearest=False)  # delay 70-100
stdp_grcpcsynapsis = p.STDPMechanism(timing_dependence=tdep_grcpcsynapsis,
                                     weight_dependence=wdep_grcpcsynapsis,
                                     voltage_dependence=None)
syndyn_grcpcsynapsis = p.SynapseDynamics(slow=stdp_grcpcsynapsis)

rng = p.NumpyRNG()
grcpc_weights_distribution = p.RandomDistribution('uniform', [0.05, 0.5], rng)
pro_grcpcsynapsis_connector = p.FixedProbabilityConnector(
    0.8, weights=grcpc_weights_distribution)
pro_grcpcsynapsis_left = p.Projection(prepop,
                                      postpop,
                                      pro_grcpcsynapsis_connector,
                                      target="excitatory",
                                      synapse_dynamics=syndyn_grcpcsynapsis,
                                      label="grcpcsynapsis")

proj = pro_grcpcsynapsis_left
proj.projection_edge.postvertex.custom_max_atoms_per_core = max(
    1, 4000 / proj.projection_edge.prevertex.atoms)

#plasticsyn.projection_edge.postvertex.custom_max_atoms_per_core = 100
"""
#!/usr/bin/python
import pyNN.spiNNaker as p
import numpy, pylab

p.setup(timestep=1.0, min_delay=1.0, max_delay=8.0, db_name='synfire.sqlite')

n_pop = 16  # number of populations
nNeurons = 10  # number of neurons in each population

p.get_db().set_number_of_neurons_per_core(
    'IF_curr_exp', nNeurons)  # this will set one population per core

# random distributions
rng = p.NumpyRNG(seed=28374)
delay_distr = p.RandomDistribution('uniform', [1, 10], rng=rng)
weight_distr = p.RandomDistribution('uniform', [0, 2], rng=rng)
v_distr = p.RandomDistribution('uniform', [-55, -95], rng)

cell_params_lif_in = {
    'tau_m': 32,
    'v_init': -80,
    'v_rest': -75,
    'v_reset': -95,
    'v_thresh': -55,
    'tau_syn_E': 5,
    'tau_syn_I': 10,
    'tau_refrac': 100,
    'i_offset': 1
}
Exemple #3
0
stimI_pop = sim.Population(num_inh,
                           sim.SpikeSourceArray,
                           {'spike_times': inh_stim_times},
                           label="inh network stimulation")

stdp_model = sim.STDPMechanism(
    timing_dependence=sim.SpikePairRule(tau_plus=tau_plus,
                                        tau_minus=tau_minus,
                                        nearest=True),
    weight_dependence=sim.AdditiveWeightDependence(w_min=min_weight,
                                                   w_max=max_weight,
                                                   A_plus=a_plus,
                                                   A_minus=a_minus))

rng = sim.NumpyRNG(seed=int(time.time()))
#rng = sim.NumpyRNG(seed=1)

e2e_lst, e2i_lst, i2e_lst, i2i_lst = connections(max_conn_per_neuron, num_exc,
                                                 num_inh, max_delay)

e2e_conn = sim.FromListConnector(e2e_lst)
e2i_conn = sim.FromListConnector(e2i_lst)
i2e_conn = sim.FromListConnector(i2e_lst)
i2i_conn = sim.FromListConnector(i2i_lst)

o2o_conn = sim.OneToOneConnector(weights=weight_to_spike, delays=1.)

#~ print("-----------------------------------------------------------------")
#~ print("-----------------------------------------------------------------")
#~ print("Excitatory to Excitatory connections")
Exemple #4
0
                       'i_offset': izk_types[inv_cell_type]['I'],
                       #'tau_syn_E': 2,
                       #'tau_syn_I': 2,
                      }

inj_cell_params = {
  'port': 12345,
}
inj_cell_type = ExternalDevices.SpikeInjector


#~ num_inh = int(num_neurons*(1./4.))

rngseed = int(time.time())
#rngseed = 1
rng = sim.NumpyRNG(seed=rngseed)
neuron_model = sim.IZK_curr_exp

sim.set_number_of_neurons_per_core(neuron_model, 128)
sim.setup(timestep=timestep, min_delay = min_delay, max_delay = max_delay)

############ stdp

stdp_model = sim.STDPMechanism(
    timing_dependence=sim.SpikePairRule(tau_plus=20., tau_minus=20.0,
                                        nearest=True),
    weight_dependence=sim.AdditiveWeightDependence(w_min=0.01, w_max=6.,
                                                   A_plus=0.02, A_minus=0.02)
  )

############ random dist objects
Exemple #5
0
"""

import pyNN.spiNNaker as p
import numpy, pylab

p.setup(timestep=1.0, min_delay=1.0, max_delay=8.0, db_name='synfire.sqlite')

n_pop = 64
nNeurons = 10

p.get_db().set_number_of_neurons_per_core(
    'IZK_curr_exp', nNeurons)  # this will set one population per core
#p.get_db().set_number_of_neurons_per_core('IF_curr_exp', 2*nNeurons)      # this will set 2 populations per core
#p.get_db().set_number_of_neurons_per_core('IF_curr_exp', nNeurons/2)      # this will set 1 population every 2 cores

rng = p.NumpyRNG(seed=28374)
rng1 = p.NumpyRNG(seed=12345)

delay_distr = p.RandomDistribution('uniform', [1, 5], rng)
weight_distr = p.RandomDistribution('uniform', [0, 2], rng1)

v_distr = p.RandomDistribution('uniform', [-85, -95], rng)

v_inits = []
for i in range(nNeurons):
    v_inits.append(v_distr.next())

RS_params = {
    'a': 0.02,
    'b': 0.2,
    'c': -70,