import numpy as np import pprint from pyNNsMD.src.device import set_gpu # No GPU for prediciton or the main class set_gpu([-1]) from pyNNsMD.NNsMD import NeuralNetEnsemble from pyNNsMD.hypers.hyper_mlp_eg import DEFAULT_HYPER_PARAM_ENERGY_GRADS as hyper pprint.pprint(hyper) # list of angles anglist = [[1, 0, 2], [1, 0, 4], [2, 0, 4], [0, 1, 3], [0, 1, 8], [3, 1, 8], [0, 4, 5], [0, 4, 6], [0, 4, 7], [6, 4, 7], [5, 4, 7], [5, 4, 6], [9, 8, 10], [1, 8, 10], [9, 8, 11], [1, 8, 9], [1, 8, 11], [10, 8, 11]] dihedlist = [[5, 1, 2, 9], [3, 1, 2, 4]] # Load data atoms = [["C", "C", "H", "H", "C", "F", "F", "F", "C", "F", "H", "H"]] * 2701 geos = np.load("butene/butene_x.npy") energy = np.load("butene/butene_energy.npy") grads = np.load("butene/butene_force.npy") nac = np.load("butene/butene_nac.npy") print(geos.shape, energy.shape, grads.shape, nac.shape) hyper["model"]["config"].update({ "atoms": 12, "states": 2,
parser.add_argument("-m", "--mode", default="training", required=True, help="Which mode to use train or retrain") args = vars(parser.parse_args()) file_std_out = open(os.path.join(args['filepath'], "fitlog.txt"), 'w') sys.stderr = file_std_out sys.stdout = file_std_out print("Input argpars:", args) from pyNNsMD.src.device import set_gpu set_gpu([int(args['gpus'])]) print("Logic Devices:", tf.config.experimental.list_logical_devices('GPU')) import pyNNsMD.utils.callbacks import pyNNsMD.utils.activ from pyNNsMD.models.schnet_e import SchnetEnergy from pyNNsMD.utils.data import load_json_file, read_xyz_file, save_json_file from pyNNsMD.scaler.energy import EnergyStandardScaler from pyNNsMD.utils.loss import ScaledMeanAbsoluteError, get_lr_metric, r2_metric from pyNNsMD.plots.loss import plot_loss_curves, plot_learning_curve from pyNNsMD.plots.pred import plot_scatter_prediction from kgcnn.utils.adj import define_adjacency_from_distance, coordinates_to_distancematrix from kgcnn.utils.data import ragged_tensor_from_nested_numpy from kgcnn.mol.methods import global_proton_dict