def traj_optim_static(paths, tree):
    path, envs, modes, mnps = paths
    guard_index = [0]
    n = len(modes)
    v_init = np.zeros((n, 3))
    for i in range(1, n):
        if not np.all(modes[i] == modes[i - 1]):
            guard_index.append(i)
        elif len(envs[i]) != 0:
            if not envs[i][0].is_same(envs[i - 1][0]):
                guard_index.append(i)
        elif not (mnps[i][0].is_same(mnps[i - 1][0])
                  and mnps[i][1].is_same(mnps[i - 1][1])):
            # manipulator change
            guard_index.append(i)
        g_v = np.identity(3)
        g_v[0:2, 0:2] = config2trans(path[i - 1])[0:2, 0:2]
        v_init[i - 1] = np.dot(g_v.T,
                               np.array(path[i]) - np.array(path[i - 1]))
    #guard_index.append(len(modes)-1)
    guard_index = np.unique(guard_index)

    Gs = dict()
    hs = dict()
    As = dict()
    bs = dict()
    for i in range(len(path)):
        G, h, A, b = contact_mode_constraints(path[i], mnps[i], envs[i],
                                              modes[i], tree.world,
                                              tree.mnp_mu, tree.env_mu,
                                              tree.mnp_fn_max)
        gid = np.any(G[:, 0:3], axis=1)
        aid = np.any(A[:, 0:3], axis=1)
        Gs[i] = G[gid, 0:3]
        hs[i] = h[gid].flatten()
        As[i] = A[aid, 0:3]
        bs[i] = b[aid].flatten()

    modeconstraints = (Gs, hs, As, bs)
    q_goal = np.array(tree.x_goal)

    opt_prob = Optimization('Trajectory Optimization', obj_fun)
    x_init = np.hstack((np.array(path).flatten(), v_init.flatten()))
    cs = constraints(x_init, path, Gs, hs, As, bs, guard_index)

    opt_prob.addVarGroup('x', n * 6, 'c', value=x_init, lower=-10, upper=10)
    opt_prob.addObj('f')
    opt_prob.addConGroup('g', len(cs), 'i', lower=0.0, upper=10000.0)
    print(opt_prob)
    slsqp = SLSQP()
    #slsqp.setOption('IPRINT', -1)
    slsqp(opt_prob,
          sens_type='FD',
          goal=q_goal,
          path=path,
          modecons=modeconstraints,
          guard_index=guard_index)
    print(opt_prob.solution(0))
    qs = [opt_prob.solution(0)._variables[i].value for i in range(n * 3)]
    return qs
Exemple #2
0
def solveOpt(int_domain,J,x,model,u0):
    def objfun(u,**kwargs):
        # 1) extract paraeters
        int_domain = kwargs['int_domain'] 
        J = kwargs['J'] 
        x = kwargs['x'] 
        model = kwargs['model'] 
        # 2) define objective function
        f = np.trapz(int_domain,J * model.pf(int_domain,u,x))
        g = [0]*2
        # 3) budget constraint 
        g[1] = u.sum() - 1
        # 4) VaR constarint
        W = model.W
        sigmaMax = model.VaR / norm.ppf(1-model.alpha)
        g[0] = -sigmaMax + np.sqrt(W.dot(u).dot(u))
        fail = 0
        return f,g,fail
    opt_prob = Optimization('test problem',objfun)
    opt_prob.addObj('f')
    opt_prob.addCon('budget const','e')    
    opt_prob.addCon('VaR const','i')
    opt_prob.addVarGroup('u',model.M,'c',lower=np.zeros(model.M),
                         upper=np.ones(model.M),value=u0)
    print opt_prob
    slsqp = SLSQP()
    slsqp.setOption('IPRINT',-1)
    slsqp(opt_prob,sens_type='FD',int_domain=int_domain,J=J,x=x,model=model)
    print opt_prob.solution(0)
    

      
    
    
Exemple #3
0
def optimize(k, w1, w2):
    
    # Physical problem
    rho = 0.2836  # lb/in^3
    L   = 5.0     # in
    P   = 25000.0 # lb
    E   = 30.0e6  # psi
    ys  = 36260.0 # psi
    fs  = 1.5
    dtruss = TwoBarTruss(rho, L, P, E, ys, fs)
    struss = StochasticTwoBarTruss(dtruss)

    # Optimization Problem
    optproblem = TwoBarTrussOpt(MPI.COMM_WORLD, struss, k, w1, w2)
    opt_prob = Optimization(args.logfile, optproblem.evalObjCon)
    
    # Add functions
    opt_prob.addObj('weight')
    opt_prob.addCon('buckling-bar1', type='i')
    opt_prob.addCon('failure-bar1' , type='i')
    opt_prob.addCon('failure-bar2' , type='i')
    
    # Add variables
    opt_prob.addVar('area-1', type='c', value= 1.5, lower= 1.5, upper= 1.5)
    opt_prob.addVar('area-2', type='c', value= 1.5, lower= 1.5, upper= 1.5)
    opt_prob.addVar('height', type='c', value= 4.0, lower= 4.0, upper= 10.0)
    
    # Optimization algorithm
    if args.algorithm == 'ALGENCAN':
        opt = ALGENCAN()
        opt.setOption('iprint',2)
        opt.setOption('epsfeas',1e-6)
        opt.setOption('epsopt',1e-6)
    else:
        opt = SLSQP(pll_type='POA')
        opt.setOption('MAXIT',999)
    
    opt(opt_prob,
        sens_type=optproblem.evalObjConGradient,
        disp_opts=True,
        store_hst=True,
        hot_start=False)
    
    if optproblem.comm.Get_rank() ==0:   
        print opt_prob.solution(0)
        opt_prob.write2file(disp_sols=True)
        x = optproblem.x_hist[-1]
        f = optproblem.fvals[0]
        print 'x', x
        print 'f', f

    return x, f
Exemple #4
0
def runoptimizer():
    opt_prob = Optimization('TP37 Constrained Problem',objfun)
    opt_prob.addObj('LL')
    opt_prob.addVar('x1','c',lower=0.01,upper=10.0,value=1.0)
    opt_prob.addVar('x2','c',lower=0.01,upper=10.0,value=1.0)
    opt_prob.addVar('x3','c',lower=0.01,upper=10.0,value=1.0)
    opt_prob.addVar('x4','c',lower=0.01,upper=10.0,value=1.0)

    opt_prob.addConGroup('g', 4, 'i')

    # sanity check
    print opt_prob
    print objfun([1.0,1.0,1.0,1.0])

    # other optimization methods can be used here - we use sequential least squares programming
    slsqp = SLSQP() 
    [fstr, xstr, inform] = slsqp(opt_prob)

    print opt_prob.solution(0)
    return [v.value for v in opt_prob.solution(0).getVarSet().values()]
Exemple #5
0
    def infill(self, points, method='error'):
        ## We'll be making non-permanent modifications to self.X and self.y here, so lets make a copy just in case
        initX = np.copy(self.X)
        inity = np.copy(self.y)

        ## This array will hold the new values we add
        returnValues = np.zeros([points, self.k], dtype=float)

        for i in range(points):
            opt_prob1 = Optimization('InFillPSO',
                                     self.errorObjective_normalized)
            for k in range(self.k):
                opt_prob1.addVar('{0}'.format(k),
                                 'c',
                                 lower=0,
                                 upper=1,
                                 value=.5)

            pso1 = ALPSO()
            pso1.setOption('SwarmSize', 100)
            pso1.setOption('maxOuterIter', 100)
            pso1.setOption('stopCriteria', 1)
            pso1(opt_prob1)

            newpoint = np.zeros(self.k)

            for j in range(self.k):
                newpoint[j] = opt_prob1.solution(0)._variables[j].value
            returnValues[i][:] = self.inversenormX(newpoint)
            self.addPoint(returnValues[i],
                          self.predict(returnValues[i]),
                          norm=True)
            self.updateModel()
            del (opt_prob1)
            del (pso1)
        self.X = np.copy(initX)
        self.y = np.copy(inity)
        self.n = len(self.X)
        self.updateModel()
        return returnValues
                    upper=float(CONS_RHS_MAX_1_php[i - 1]),
                    value=1)
opt_prob.addObj('f')

for i in range(1, len(NUTRIENTS_php) * 2 + 1):
    g_value = 'g' + str(i)
    opt_prob.addCon(g_value, 'i')

# Instantiate Optimizer (SLSQP)
slsqp = SLSQP()
slsqp.setOption('IPRINT', 2)

# Solve Problem (Without Parallel Gradient)
[fstr, xstr, inform] = slsqp(opt_prob, sens_type='CS')
if myrank == 0:
    sol = opt_prob.solution(0)
#end

xstr_array = []
for element in xstr:
    element = decimal.Decimal(element)
    xstr_array.append(round(element, 4))

results_vector = []

results_vector.append(xstr_array)

fstr_array = []
for element in fstr:
    fstr_array.append(element)
class SLSQP_pyOpt(Algorithm):
    """ Utilization of the SLSQP algorithm of pyOpt package."""
    def __init__(self):
        """Initialize the SLSQP algorithm for a specific building.
        """
        print("Initializing the SLSQP Optimizer...")
        self.opt_prob = []
        self.opt = []
        self.building = Building()

    def configure(self, building):

        # Get building and optimization setup properties
        self.building = deepcopy(building)
        self.T, self.states, self.actions, self.disturbances, self.controlLim, self.actionLim, self.comfort, self.occ, self.nvars, self.ncons = self.building.getConfiguration(
        )

        # Define Box Constraints (min/max values) for the control parameters
        boxConstraints = []
        for ii in range(self.nvars):
            boxConstraints.append(self.controlLim)

        # Link to the python function calculating the cost and the constraints
        self.opt_prob = Optimization('SLSQP Constrained Problem',
                                     self.wrapSimulation)

        # Setupt Box Constrains in pyOpt
        for ii in range(self.nvars):
            self.opt_prob.addVar('x' + str(ii + 1),
                                 'c',
                                 lower=boxConstraints[ii][0],
                                 upper=boxConstraints[ii][1],
                                 value=self.building.policy[0, ii])

        # Setupt Cost Function in pyOpt
        self.opt_prob.addObj('f')

        # Setupt Inequality Constraints in pyOpt
        for ii in range(self.ncons):
            self.opt_prob.addCon('g' + str(ii + 1), 'i')

        # Print the Optimization setup
        print("----------------------------------------")
        print("----------------------------------------")
        print("SLSQP Optimization setup:")
        print(self.opt_prob)

    def optimize(self, options=[]):
        # Set SLSQP as the optimizer
        self.opt = SLSQP()

        # Set optimization options
        if (len(options) > 0):
            for ii in range(len(options)):
                self.opt.setOption(options.keys()[ii], options.values()[ii])

        # Print the Optimizer Options
        print("----------------------------------------")
        print("----------------------------------------")
        print("SLSQP Optimizer options:")
        print(self.opt.options)

        # Get optimized controller
        self.opt(self.opt_prob, sens_step=1e-6)
        print(self.opt_prob.solution(0))
        a = self.opt_prob.solution(0)
        for ii in range(self.building.policy.shape[1]):
            self.building.policy[0, ii] = a.getVar(ii).value

        return self.building.policy

    def wrapSimulation(self, policy):
        """A function that runs a building simulation and wraps the results in the 
        format required by PyOpt library.
        Args: 
            policy (numpy array): the controller to be used for the simulation
            
        Returns: 
            f (float): the cost function value
            g (list): the vales of all constraints
            fail (0/1): indicates if the function finished successfully
        """
        # Cost and Constraints
        f = 0
        g = []
        fail = 0

        # Run building simulation
        x, cost, constraints = self.building.simulate(policy)
        f = np.sum(cost)
        g.append(np.sum(constraints))

        #        print(f)
        #        print(g[0])

        return f, g, fail
Exemple #8
0
                                                          (x[1] - b[i])**2)))
    #end

    g = [0.0] * 1
    g[0] = 20.04895 - (x[0] + 2.0)**2 - (x[1] + 1.0)**2

    fail = 0

    return f, g, fail


# =============================================================================
#
# =============================================================================
opt_prob = Optimization('Langermann Function 11', objfunc)
opt_prob.addVar('x1', 'c', lower=-2.0, upper=10.0, value=8.0)
opt_prob.addVar('x2', 'c', lower=-2.0, upper=10.0, value=8.0)
opt_prob.addObj('f')
opt_prob.addCon('g', 'i')
print(opt_prob)

# Global Optimization
nsga2 = NSGA2()
nsga2(opt_prob)
print(opt_prob.solution(0))

# Local Optimization Refinement
slsqp = SLSQP()
slsqp(opt_prob.solution(0))
print(opt_prob.solution(0).solution(0))
Exemple #9
0
    time.sleep(0.5)

    fail = 0
    return f, g, fail

# =============================================================================
#
# =============================================================================

# Instantiate Optimization Problem
opt_prob = Optimization('TP37 Constrained Problem', objfunc)
opt_prob.addVar('x1', 'c', lower=0.0, upper=42.0, value=10.0)
opt_prob.addVar('x2', 'c', lower=0.0, upper=42.0, value=10.0)
opt_prob.addVar('x3', 'c', lower=0.0, upper=42.0, value=10.0)
opt_prob.addObj('f')
opt_prob.addCon('g1', 'i')
opt_prob.addCon('g2', 'i')

# Instantiate Optimizer (SLSQP)
slsqp = SLSQP()
slsqp.setOption('IPRINT', -1)

# Solve Problem (Without Parallel Gradient)
slsqp(opt_prob, sens_type='CS')

# end

# Solve Problem (With Parallel Gradient)
slsqp(opt_prob, sens_type='CS', sens_mode='pgc')
print opt_prob.solution(1)
def main():
    ###########################################
    # Define some values
    ###########################################
    n_blades = 2
    n_elements = 10
    radius = unit_conversion.in2m(9.6) / 2
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    vehicle_weight = 12.455
    max_chord = 0.3
    max_chord_tip = 5.
    alt = 0
    tip_loss = True
    mach_corr = False

    # Forward flight parameters
    v_inf = 4.  # m/s
    alpha0 = 0.0454  # Starting guess for trimmed alpha in radians
    n_azi_elements = 5

    # Mission times
    time_in_hover = 300.  # Time in seconds
    time_in_ff = 500.
    mission_time = [time_in_hover, time_in_ff]

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    lift_curve_info_dict = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))
        lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(
            allowable_Re, Cl_tables[airfoils[0][0]])

    ###########################################
    # Set design variable bounds
    ###########################################
    # Hover opt 500 gen, 1000 pop, 12.455 N weight, 9.6 in prop
    chord = np.array([
        0.11923604, 0.2168746, 0.31540216, 0.39822882, 0.42919, 0.35039799,
        0.3457828, 0.28567224, 0.23418368, 0.13502483
    ])
    twist = np.array([
        0.45316866, 0.38457724, 0.38225075, 0.34671967, 0.33151445, 0.28719111,
        0.25679667, 0.25099005, 0.19400679, 0.10926302
    ])
    omega = 3811.03596674 * 2 * np.pi / 60
    original = (omega, chord, twist)

    dtwist = np.array(
        [twist[i + 1] - twist[i] for i in xrange(len(twist) - 1)])
    dchord = np.array(
        [chord[i + 1] - chord[i] for i in xrange(len(chord) - 1)])
    twist0 = twist[0]
    chord0 = chord[0]

    omega_start = omega

    dtwist_start = dtwist
    dchord_start = dchord
    twist0_start = twist0
    chord0_start = chord0

    omega_lower = 2000 * 2 * np.pi / 60
    omega_upper = 8000.0 * 2 * np.pi / 60

    twist0_lower = 0. * 2 * np.pi / 360
    twist0_upper = 60. * 2 * np.pi / 360

    chord0_upper = 0.1198
    chord0_lower = 0.05

    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    opt_prob = Optimization('Mission Simulator', objfun)
    opt_prob.addVar('omega_h',
                    'c',
                    value=omega_start,
                    lower=omega_lower,
                    upper=omega_upper)
    opt_prob.addVar('twist0',
                    'c',
                    value=twist0_start,
                    lower=twist0_lower,
                    upper=twist0_upper)
    opt_prob.addVar('chord0',
                    'c',
                    value=chord0_start,
                    lower=chord0_lower,
                    upper=chord0_upper)
    opt_prob.addVarGroup('dtwist',
                         n_elements - 1,
                         'c',
                         value=dtwist_start,
                         lower=dtwist_lower,
                         upper=dtwist_upper)
    opt_prob.addVarGroup('dchord',
                         n_elements - 1,
                         'c',
                         value=dchord_start,
                         lower=dchord_lower,
                         upper=dchord_upper)
    opt_prob.addObj('f')
    opt_prob.addCon('thrust', 'i')
    opt_prob.addCon('c_tip', 'i')
    opt_prob.addConGroup('c_lower', n_elements, 'i')
    opt_prob.addConGroup('c_upper', n_elements, 'i')
    print opt_prob

    slsqp = SLSQP()
    slsqp.setOption('IPRINT', 1)
    slsqp.setOption('MAXIT', 1000)
    slsqp.setOption('ACC', 1e-8)
    fstr, xstr, inform = slsqp(opt_prob,
                               sens_type='FD',
                               n_blades=n_blades,
                               radius=radius,
                               dy=dy,
                               dr=dr,
                               y=y,
                               r=r,
                               pitch=pitch,
                               airfoils=airfoils,
                               vehicle_weight=vehicle_weight,
                               max_chord=max_chord,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               Cl_tables=Cl_tables,
                               Cd_tables=Cd_tables,
                               allowable_Re=allowable_Re,
                               alt=alt,
                               v_inf=v_inf,
                               alpha0=alpha0,
                               mission_time=mission_time,
                               n_azi_elements=n_azi_elements,
                               lift_curve_info_dict=lift_curve_info_dict,
                               max_chord_tip=max_chord_tip)
    print opt_prob.solution(0)

    # pop_size = 300
    # max_gen = 500
    # opt_method = 'nograd'
    # nsga2 = NSGA2()
    # nsga2.setOption('PrintOut', 2)
    # nsga2.setOption('PopSize', pop_size)
    # nsga2.setOption('maxGen', max_gen)
    # nsga2.setOption('pCross_real', 0.85)
    # nsga2.setOption('xinit', 1)
    # fstr, xstr, inform = nsga2(opt_prob, n_blades=n_blades, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, vehicle_weight=vehicle_weight, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method, alt=alt,
    #                            v_inf=v_inf, alpha0=alpha0, mission_time=mission_time, n_azi_elements=n_azi_elements,
    #                            pop_size=pop_size, max_gen=max_gen, lift_curve_info_dict=lift_curve_info_dict,
    #                            max_chord_tip=max_chord_tip)
    # print opt_prob.solution(0)

    # opt_method = 'nograd'
    # xstart_alpso = np.concatenate((np.array([omega_start, twist0_start, chord0_start]), dtwist_start, dchord_start))
    # alpso = ALPSO()
    # alpso.setOption('xinit', 0)
    # alpso.setOption('SwarmSize', 200)
    # alpso.setOption('maxOuterIter', 100)
    # alpso.setOption('stopCriteria', 0)
    # fstr, xstr, inform = alpso(opt_prob, xstart=xstart_alpso,  n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method)
    # print opt_prob.solution(0)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)
        quad = quadrotor.Quadrotor(prop, vehicle_weight)

        ff_kwargs = {
            'propeller': prop,
            'pitch': pitch,
            'n_azi_elements': n_azi_elements,
            'allowable_Re': allowable_Re,
            'Cl_funs': Cl_funs,
            'Cd_funs': Cd_funs,
            'tip_loss': tip_loss,
            'mach_corr': mach_corr,
            'alt': alt,
            'lift_curve_info_dict': lift_curve_info_dict
        }
        trim0 = np.array([alpha0, o])
        alpha_trim, omega_trim, converged = trim.trim(quad, v_inf, trim0,
                                                      ff_kwargs)
        T_ff, H_ff, P_ff = bemt.bemt_forward_flight(
            quad,
            pitch,
            omega_trim,
            alpha_trim,
            v_inf,
            n_azi_elements,
            alt=alt,
            tip_loss=tip_loss,
            mach_corr=mach_corr,
            allowable_Re=allowable_Re,
            Cl_funs=Cl_funs,
            Cd_funs=Cd_funs,
            lift_curve_info_dict=lift_curve_info_dict)

        dT_h, P_h = bemt.bemt_axial(prop,
                                    pitch,
                                    o,
                                    allowable_Re=allowable_Re,
                                    Cl_funs=Cl_funs,
                                    Cd_funs=Cd_funs,
                                    tip_loss=tip_loss,
                                    mach_corr=mach_corr,
                                    alt=alt)
        return sum(dT_h), P_h, T_ff, P_ff, alpha_trim, omega_trim

    omega = xstr[0]
    twist0 = xstr[1]
    chord0 = xstr[2]
    dtwist = xstr[3:3 + len(r) - 1]
    dchord = xstr[3 + len(r) - 1:]

    twist = calc_twist_dist(twist0, dtwist)
    chord = calc_chord_dist(chord0, dchord)

    print "chord = " + repr(chord)
    print "twist = " + repr(twist)

    # twist_base = calc_twist_dist(twist0_base, dtwist_base)
    # chord_base = calc_chord_dist(chord0_base, dchord_base)

    perf_opt = get_performance(omega, chord, twist)
    perf_orig = get_performance(original[0], original[1], original[2])

    print "omega_orig = " + str(original[0])
    print "Hover Thrust of original = " + str(perf_orig[0])
    print "Hover Power of original = " + str(perf_orig[1])
    print "FF Thrust of original = " + str(perf_orig[2])
    print "FF Power of original = " + str(perf_orig[3])
    print "Trim original (alpha, omega) = (%f, %f)" % (perf_orig[4],
                                                       perf_orig[5])

    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "Hover Thrust of optimized = " + str(perf_opt[0])
    print "Hover Power of optimized = " + str(perf_opt[1])
    print "FF Thrust of optimized = " + str(perf_opt[2])
    print "FF Power of optimized = " + str(perf_opt[3])
    print "Trim optimized (alpha, omega) = (%f, %f)" % (perf_opt[4],
                                                        perf_opt[5])
    # print "Omega base = " + str(omega_start*60/2/np.pi)
    # print "Thrust of base = " + str(sum(perf_base[0]))
    # print "Power of base = " + str(sum(perf_base[1]))
    #
    plt.figure(1)
    plt.plot(r, original[1], '-b')
    plt.plot(r, chord, '-r')
    plt.xlabel('radial location')
    plt.ylabel('c/R')
    plt.legend(['start', 'opt'])

    plt.figure(2)
    plt.plot(r, original[2] * 180 / np.pi, '-b')
    plt.plot(r, twist * 180 / np.pi, '-r')
    plt.xlabel('radial location')
    plt.ylabel('twist')
    plt.legend(['start', 'opt'])

    plt.show()
#print out the problem
print opt_prob

#Run the GA
# nsga = NSGA2(PopSize=300, maxGen=500, pMut_real=.1)
# nsga(opt_prob)
#
pso = ALPSO()
pso.setOption('SwarmSize', 30)
pso.setOption('maxOuterIter', 100)
pso.setOption('stopCriteria', 1)
# pso.setOption('dt',1)
pso(opt_prob)

#print the best solution
print opt_prob.solution(0)

# Update the model variables to the best solution found by the optimizer
a.update([
    opt_prob.solution(0)._variables[0].value,
    opt_prob.solution(0)._variables[1].value,
    opt_prob.solution(0)._variables[2].value,
    opt_prob.solution(0)._variables[3].value,
    opt_prob.solution(0)._variables[4].value,
    opt_prob.solution(0)._variables[5].value
])

for enu, i in enumerate(x):
    print y[enu], a.predict(i)
    def optimizeTrajectory(self, plot_func=None):
        # use non-linear optimization to find parameters for minimal
        # condition number trajectory

        self.plot_func = plot_func

        if self.config['showOptimizationGraph']:
            self.initGraph()

        ## describe optimization problem with pyOpt classes

        from pyOpt import Optimization
        from pyOpt import ALPSO, SLSQP

        # Instanciate Optimization Problem
        opt_prob = Optimization('Trajectory optimization', self.objective_func)
        opt_prob.addObj('f')

        # add variables, define bounds
        # w_f - pulsation
        opt_prob.addVar('wf', 'c', value=self.wf_init, lower=self.wf_min, upper=self.wf_max)

        # q - offsets
        for i in range(self.dofs):
            opt_prob.addVar('q_%d'%i,'c', value=self.qinit[i], lower=self.qmin[i], upper=self.qmax[i])
        # a, b - sin/cos params
        for i in range(self.dofs):
            for j in range(self.nf[0]):
                opt_prob.addVar('a{}_{}'.format(i,j), 'c', value=self.ainit[i][j], lower=self.amin, upper=self.amax)
        for i in range(self.dofs):
            for j in range(self.nf[0]):
                opt_prob.addVar('b{}_{}'.format(i,j), 'c', value=self.binit[i][j], lower=self.bmin, upper=self.bmax)

        # add constraint vars (constraint functions are in obfunc)
        if self.config['minVelocityConstraint']:
            opt_prob.addConGroup('g', self.dofs*5, 'i')
        else:
            opt_prob.addConGroup('g', self.dofs*4, 'i')
        #print opt_prob

        initial = [v.value for v in list(opt_prob._variables.values())]

        if self.config['useGlobalOptimization']:
            ### optimize using pyOpt (global)
            opt = ALPSO()  #augmented lagrange particle swarm optimization
            opt.setOption('stopCriteria', 0)
            opt.setOption('maxInnerIter', 3)
            opt.setOption('maxOuterIter', self.config['globalOptIterations'])
            opt.setOption('printInnerIters', 1)
            opt.setOption('printOuterIters', 1)
            opt.setOption('SwarmSize', 30)
            opt.setOption('xinit', 1)
            #TODO: how to properly limit max number of function calls?
            # no. func calls = (SwarmSize * inner) * outer + SwarmSize
            self.iter_max = opt.getOption('SwarmSize') * opt.getOption('maxInnerIter') * opt.getOption('maxOuterIter') + opt.getOption('SwarmSize')

            # run fist (global) optimization
            try:
                #reuse history
                opt(opt_prob, store_hst=False, hot_start=True, xstart=initial)
            except NameError:
                opt(opt_prob, store_hst=False, xstart=initial)
            print(opt_prob.solution(0))

        ### pyOpt local

        # after using global optimization, get more exact solution with
        # gradient based method init optimizer (only local)
        opt2 = SLSQP()   #sequential least squares
        opt2.setOption('MAXIT', self.config['localOptIterations'])
        if self.config['verbose']:
            opt2.setOption('IPRINT', 0)
        # TODO: amount of function calls depends on amount of variables and iterations to approximate gradient
        # iterations are probably steps along the gradient. How to get proper no. of func calls?
        self.iter_max = "(unknown)"

        if self.config['useGlobalOptimization']:
            if self.last_best_sol is not None:
                #use best constrained solution
                for i in range(len(opt_prob._variables)):
                    opt_prob._variables[i].value = self.last_best_sol[i]
            else:
                #reuse previous solution
                for i in range(len(opt_prob._variables)):
                    opt_prob._variables[i].value = opt_prob.solution(0).getVar(i).value

            opt2(opt_prob, store_hst=False, sens_step=0.1)
        else:
            try:
                #reuse history
                opt2(opt_prob, store_hst=True, hot_start=True, sens_step=0.1)
            except NameError:
                opt2(opt_prob, store_hst=True, sens_step=0.1)

        local_sol = opt_prob.solution(0)
        if not self.config['useGlobalOptimization']:
            print(local_sol)
        local_sol_vec = np.array([local_sol.getVar(x).value for x in range(0,len(local_sol._variables))])

        if self.last_best_sol is not None:
            local_sol_vec = self.last_best_sol
            print("using last best constrained solution instead of given solver solution.")

        sol_wf, sol_q, sol_a, sol_b = self.vecToParams(local_sol_vec)

        print("testing final solution")
        self.iter_cnt = 0
        self.objective_func(local_sol_vec)
        print("\n")

        self.trajectory.initWithParams(sol_a, sol_b, sol_q, self.nf, sol_wf)

        if self.config['showOptimizationGraph']:
            plt.ioff()

        return self.trajectory
    def execute(self):
        """pyOpt execution. Note that pyOpt controls the execution, and the
        individual optimizers control the iteration."""
        
        self.pyOpt_solution = None
    
        opt_prob = Optimization(self.title, self.objfunc, var_set={}, 
                                obj_set={}, con_set={})
        
        # Add all parameters
        for name, param in self.get_parameters().iteritems():
            
            val = param.evaluate()
            
            # We need to identify Enums, Lists, Dicts
            metadata = param.get_metadata()[0][1]          
            
            # enumerated, discrete or continuous
            choices = []
            if ('values' in metadata and \
               isinstance(metadata['values'],(list, tuple, array, set))):
                vartype = 'd'
                choices = metadata['values']
            elif isinstance(val, bool):
                vartype = 'd'
                choices = [True, False]
            elif isinstance(val, (int, int32, int64)):
                vartype = 'i'
            elif isinstance(val, (float, float32, float64)):
                vartype = 'c'
            else:
                msg = 'Only continuous, descrete, or enumerated variables ' + \
                      'are supported. %s is %s.' % (name, type(val))
                self.raise_exception(msg, ValueError)
            
            opt_prob.addVar(name, vartype, lower=param.low, upper=param.high, 
                            value=val, choices=choices)

        # Add all objectives
        for name in self.get_objectives().keys():
            opt_prob.addObj(name)
            
        # Add all equality constraints
        for name in self.get_eq_constraints().keys():
            opt_prob.addCon(name, type='e')
        
        # Add all inequality constraints
        for name in self.get_ineq_constraints().keys():
            opt_prob.addCon(name, type='i')

        # Instantiate the requested optimizer
        optimizer = self.optimizer
        try:
            exec('from pyOpt import %s' % optimizer)
        except ImportError:
            msg = "Optimizer %s is not avialable in this installation." % \
                   optimizer
            self.raise_exception(msg, ImportError)
            
        optname = vars()[optimizer]
        opt = optname()
        
        # Set optimization options
        for option, value in self.options.iteritems():
            opt.setOption(option, value)

        # Execute the optimization problem
        if self.differentiator:
            # Use OpenMDAO's differentiator for the gradient
            opt(opt_prob, sens_type=self.gradfunc)
        else:
            # Use pyOpt's internal finite difference
            opt(opt_prob, sens_type='FD')
        
        # Print results
        if self.print_results:
            print opt_prob.solution(0)
        
        # Pull optimal parameters back into framework and re-run, so that
        # framework is left in the right final state
        dvals = []
        for i in range(0, len(opt_prob.solution(0)._variables)):
            dvals.append(opt_prob.solution(0)._variables[i].value)
        self.set_parameters(dvals)
        self.run_iteration()
        
        # Save the most recent solution.
        self.pyOpt_solution = opt_prob.solution(0)
Exemple #14
0
def main():
    ###########################################
    # Define some values
    ###########################################
    n_blades = 2
    n_elements = 10
    radius = unit_conversion.in2m(9.6) / 2
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    #allowable_Re = []
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    vehicle_weight = 12.455
    max_chord = 0.6
    max_chord_tip = 5.
    alt = 0
    tip_loss = True
    mach_corr = False

    # Forward flight parameters
    v_inf = 4.  # m/s
    alpha0 = 0.0454  # Starting guess for trimmed alpha in radians
    n_azi_elements = 5

    # Mission times
    time_in_hover = 0.  # Time in seconds
    time_in_ff = 500.
    mission_time = [time_in_hover, time_in_ff]

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    lift_curve_info_dict = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))
        lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(
            allowable_Re, Cl_tables[airfoils[0][0]])

    ###########################################
    # Set design variable bounds
    ###########################################
    omega_start = 4250. * 2 * np.pi / 60
    # These are c/R values for the DA4002 propeller given at the UIUC propeller database
    chord_base = np.array([
        0.1198, 0.1128, 0.1436, 0.1689, 0.1775, 0.1782, 0.1773, 0.1782, 0.1790,
        0.1787, 0.1787, 0.1786, 0.1785, 0.1790, 0.1792, 0.1792, 0.1692, 0.0154
    ])
    chord_base = np.array(
        [chord_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    twist_base = np.array([
        42.481, 44.647, 41.154, 37.475, 34.027, 30.549, 27.875, 25.831, 23.996,
        22.396, 21.009, 19.814, 18.786, 17.957, 17.245, 16.657, 13.973, 2.117
    ]) * 2 * np.pi / 360
    twist_base = np.array(
        [twist_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    dtwist_base = np.array([
        twist_base[i + 1] - twist_base[i] for i in xrange(len(twist_base) - 1)
    ])
    dchord_base = np.array([
        chord_base[i + 1] - chord_base[i] for i in xrange(len(chord_base) - 1)
    ])
    twist0_base = twist_base[0]
    chord0_base = chord_base[0]

    chord_start = chord_base
    twist_start = twist_base
    dtwist_start = dtwist_base
    dchord_start = dchord_base
    twist0_start = twist0_base
    chord0_start = chord0_base
    print "chord0_start = " + str(chord0_start)

    omega_lower = 2000 * 2 * np.pi / 60
    omega_upper = 8000.0 * 2 * np.pi / 60

    twist0_lower = 0. * 2 * np.pi / 360
    twist0_upper = 60. * 2 * np.pi / 360

    chord0_upper = 0.1198
    chord0_lower = 0.05

    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    opt_prob = Optimization('Mission Simulator', objfun)
    opt_prob.addVar('omega_h',
                    'c',
                    value=omega_start,
                    lower=omega_lower,
                    upper=omega_upper)
    opt_prob.addVar('twist0',
                    'c',
                    value=twist0_start,
                    lower=twist0_lower,
                    upper=twist0_upper)
    opt_prob.addVar('chord0',
                    'c',
                    value=chord0_start,
                    lower=chord0_lower,
                    upper=chord0_upper)
    opt_prob.addVarGroup('dtwist',
                         n_elements - 1,
                         'c',
                         value=dtwist_start,
                         lower=dtwist_lower,
                         upper=dtwist_upper)
    opt_prob.addVarGroup('dchord',
                         n_elements - 1,
                         'c',
                         value=dchord_start,
                         lower=dchord_lower,
                         upper=dchord_upper)
    opt_prob.addObj('f')
    opt_prob.addCon('thrust', 'i')
    opt_prob.addCon('c_tip', 'i')
    opt_prob.addConGroup('c_lower', n_elements, 'i')
    opt_prob.addConGroup('c_upper', n_elements, 'i')
    print opt_prob

    pop_size = 300
    max_gen = 1100
    opt_method = 'nograd'
    nsga2 = NSGA2()
    nsga2.setOption('PrintOut', 2)
    nsga2.setOption('PopSize', pop_size)
    nsga2.setOption('maxGen', max_gen)
    nsga2.setOption('pCross_real', 0.85)
    nsga2.setOption('pMut_real', 0.2)
    nsga2.setOption('xinit', 1)
    fstr, xstr, inform = nsga2(opt_prob,
                               n_blades=n_blades,
                               radius=radius,
                               dy=dy,
                               dr=dr,
                               y=y,
                               r=r,
                               pitch=pitch,
                               airfoils=airfoils,
                               vehicle_weight=vehicle_weight,
                               max_chord=max_chord,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               Cl_tables=Cl_tables,
                               Cd_tables=Cd_tables,
                               allowable_Re=allowable_Re,
                               opt_method=opt_method,
                               alt=alt,
                               v_inf=v_inf,
                               alpha0=alpha0,
                               mission_time=mission_time,
                               n_azi_elements=n_azi_elements,
                               pop_size=pop_size,
                               max_gen=max_gen,
                               lift_curve_info_dict=lift_curve_info_dict,
                               max_chord_tip=max_chord_tip)
    print opt_prob.solution(0)

    # opt_method = 'nograd'
    # xstart_alpso = np.concatenate((np.array([omega_start, twist0_start, chord0_start]), dtwist_start, dchord_start))
    # alpso = ALPSO()
    # alpso.setOption('xinit', 0)
    # alpso.setOption('SwarmSize', 200)
    # alpso.setOption('maxOuterIter', 100)
    # alpso.setOption('stopCriteria', 0)
    # fstr, xstr, inform = alpso(opt_prob, xstart=xstart_alpso,  n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method)
    # print opt_prob.solution(0)

    # opt_method = 'grad'
    # slsqp = SLSQP()
    # slsqp.setOption('IPRINT', 1)
    # slsqp.setOption('MAXIT', 1000)
    # slsqp.setOption('ACC', 1e-7)
    # fstr, xstr, inform = slsqp(opt_prob, sens_type='FD', n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord,
    #                            tip_loss=tip_loss, mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs,
    #                            Cl_tables=Cl_tables, Cd_tables=Cd_tables, allowable_Re=allowable_Re,
    #                            opt_method=opt_method, alt=alt)
    # print opt_prob.solution(0)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)
        quad = quadrotor.Quadrotor(prop, vehicle_weight)

        ff_kwargs = {
            'propeller': prop,
            'pitch': pitch,
            'n_azi_elements': n_azi_elements,
            'allowable_Re': allowable_Re,
            'Cl_funs': Cl_funs,
            'Cd_funs': Cd_funs,
            'tip_loss': tip_loss,
            'mach_corr': mach_corr,
            'alt': alt,
            'lift_curve_info_dict': lift_curve_info_dict
        }
        trim0 = np.array([alpha0, o])
        alpha_trim, omega_trim, converged = trim.trim(quad, v_inf, trim0,
                                                      ff_kwargs)
        T_ff, H_ff, P_ff = bemt.bemt_forward_flight(
            quad,
            pitch,
            omega_trim,
            alpha_trim,
            v_inf,
            n_azi_elements,
            alt=alt,
            tip_loss=tip_loss,
            mach_corr=mach_corr,
            allowable_Re=allowable_Re,
            Cl_funs=Cl_funs,
            Cd_funs=Cd_funs,
            lift_curve_info_dict=lift_curve_info_dict)

        dT_h, P_h = bemt.bemt_axial(prop,
                                    pitch,
                                    o,
                                    allowable_Re=allowable_Re,
                                    Cl_funs=Cl_funs,
                                    Cd_funs=Cd_funs,
                                    tip_loss=tip_loss,
                                    mach_corr=mach_corr,
                                    alt=alt)
        return sum(dT_h), P_h, T_ff, P_ff, alpha_trim, omega_trim

    omega = xstr[0]
    twist0 = xstr[1]
    chord0 = xstr[2]
    dtwist = xstr[3:3 + len(r) - 1]
    dchord = xstr[3 + len(r) - 1:]

    twist = calc_twist_dist(twist0, dtwist)
    chord = calc_chord_dist(chord0, dchord)

    print "chord = " + repr(chord)
    print "twist = " + repr(twist)

    # twist_base = calc_twist_dist(twist0_base, dtwist_base)
    # chord_base = calc_chord_dist(chord0_base, dchord_base)

    perf_opt = get_performance(omega, chord, twist)
    #perf_base = get_performance(omega_start, chord_base, twist_base)
    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "Hover Thrust of optimized = " + str(perf_opt[0])
    print "Hover Power of optimized = " + str(perf_opt[1])
    print "FF Thrust of optimized = " + str(perf_opt[2])
    print "FF Power of optimized = " + str(perf_opt[3])
    print "Trim (alpha, omega) = (%f, %f)" % (perf_opt[4], perf_opt[5])
Exemple #15
0
def main():
    ###########################################
    # Define some values
    ###########################################
    n_blades = 2
    n_elements = 10
    radius = unit_conversion.in2m(9.6) / 2
    #radius = 0.1397
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    #allowable_Re = []
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    vehicle_weight = 12.455
    max_chord = 0.6
    alt = 0
    tip_loss = True
    mach_corr = False

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    lift_curve_info_dict = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))
        lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(
            allowable_Re, Cl_tables[airfoils[0][0]])

    ###########################################
    # Set design variable bounds
    ###########################################
    omega_start = 4250. * 2 * np.pi / 60
    chord_base = np.array([
        0.1198, 0.1128, 0.1436, 0.1689, 0.1775, 0.1782, 0.1773, 0.1782, 0.1790,
        0.1787, 0.1787, 0.1786, 0.1785, 0.1790, 0.1792, 0.1792, 0.1692, 0.0154
    ])
    chord_base = np.array(
        [chord_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    twist_base = np.array([
        42.481, 44.647, 41.154, 37.475, 34.027, 30.549, 27.875, 25.831, 23.996,
        22.396, 21.009, 19.814, 18.786, 17.957, 17.245, 16.657, 13.973, 2.117
    ]) * 2 * np.pi / 360
    twist_base = np.array(
        [twist_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    dtwist_base = np.array([
        twist_base[i + 1] - twist_base[i] for i in xrange(len(twist_base) - 1)
    ])
    dchord_base = np.array([
        chord_base[i + 1] - chord_base[i] for i in xrange(len(chord_base) - 1)
    ])
    twist0_base = twist_base[0]
    chord0_base = chord_base[0]

    chord_start = chord_base
    twist_start = twist_base
    dtwist_start = dtwist_base
    dchord_start = dchord_base
    twist0_start = twist0_base
    chord0_start = chord0_base

    # chord = np.array([8.92386048e-02, 1.73000845e-01, 2.70523039e-01, 2.71542807e-01, 2.78749355e-01, 2.36866151e-01,
    #                   2.04103526e-01, 1.37456074e-01, 8.68094589e-02, 1.05601135e-04])
    # twist = np.array([0.00161645, 0.15105685, 0.28791442, 0.31577392, 0.28644651, 0.27418749, 0.24854514, 0.21812646,
    #                   0.19802027, 0.14972058])
    # omega_start = 3184.41320387 * 2*np.pi/60
    # chord_start = chord
    # twist_start = twist
    # dchord_start = np.array([chord[i+1]-chord[i] for i in xrange(len(chord)-1)])
    # dtwist_start = np.array([twist[i+1]-twist[i] for i in xrange(len(twist)-1)])
    # twist0_start = twist[0]
    # chord0_start = chord[0]

    ## Initialize everything to zeros
    # dtwist_start = np.zeros(n_elements-1)
    # dchord_start = np.zeros(n_elements-1)
    # twist0_start = 0.0
    # chord0_start = 0.0

    omega_lower = 2000 * 2 * np.pi / 60
    omega_upper = 8000.0 * 2 * np.pi / 60

    twist0_lower = 0.0 * 2 * np.pi / 360
    twist0_upper = 60. * 2 * np.pi / 360

    chord0_upper = 0.1198
    chord0_lower = 0.05

    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    opt_prob = Optimization('Rotor in Hover', objfun)
    opt_prob.addVar('omega',
                    'c',
                    value=omega_start,
                    lower=omega_lower,
                    upper=omega_upper)
    opt_prob.addVar('twist0',
                    'c',
                    value=twist0_start,
                    lower=twist0_lower,
                    upper=twist0_upper)
    opt_prob.addVar('chord0',
                    'c',
                    value=chord0_start,
                    lower=chord0_lower,
                    upper=chord0_upper)
    opt_prob.addVarGroup('dtwist',
                         n_elements - 1,
                         'c',
                         value=dtwist_start,
                         lower=dtwist_lower,
                         upper=dtwist_upper)
    opt_prob.addVarGroup('dchord',
                         n_elements - 1,
                         'c',
                         value=dchord_start,
                         lower=dchord_lower,
                         upper=dchord_upper)
    opt_prob.addObj('f')
    opt_prob.addCon('thrust', 'i')
    opt_prob.addConGroup('c_lower', n_elements, 'i')
    opt_prob.addConGroup('c_upper', n_elements, 'i')
    print opt_prob

    opt_method = 'nograd'
    nsga2 = NSGA2()
    nsga2.setOption('PrintOut', 2)
    nsga2.setOption('PopSize', 300)
    nsga2.setOption('maxGen', 1100)
    nsga2.setOption('pCross_real', 0.85)
    nsga2.setOption('xinit', 1)
    fstr, xstr, inform = nsga2(opt_prob,
                               n_blades=n_blades,
                               n_elements=n_elements,
                               root_cutout=root_cutout,
                               radius=radius,
                               dy=dy,
                               dr=dr,
                               y=y,
                               r=r,
                               pitch=pitch,
                               airfoils=airfoils,
                               vehicle_weight=vehicle_weight,
                               max_chord=max_chord,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               Cl_tables=Cl_tables,
                               Cd_tables=Cd_tables,
                               allowable_Re=allowable_Re,
                               opt_method=opt_method,
                               alt=alt,
                               lift_curve_info_dict=lift_curve_info_dict)
    print opt_prob.solution(0)

    # opt_method = 'nograd'
    # xstart_alpso = np.concatenate((np.array([omega_start, twist0_start, chord0_start]), dtwist_start, dchord_start))
    # alpso = ALPSO()
    # alpso.setOption('xinit', 0)
    # alpso.setOption('SwarmSize', 200)
    # alpso.setOption('maxOuterIter', 100)
    # alpso.setOption('stopCriteria', 0)
    # fstr, xstr, inform = alpso(opt_prob, xstart=xstart_alpso,  n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method)
    # print opt_prob.solution(0)

    # opt_method = 'grad'
    # slsqp = SLSQP()
    # slsqp.setOption('IPRINT', 1)
    # slsqp.setOption('MAXIT', 1000)
    # slsqp.setOption('ACC', 1e-7)
    # fstr, xstr, inform = slsqp(opt_prob, sens_type='FD', n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord,
    #                            tip_loss=tip_loss, mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs,
    #                            Cl_tables=Cl_tables, Cd_tables=Cd_tables, allowable_Re=allowable_Re,
    #                            opt_method=opt_method, alt=alt)
    # print opt_prob.solution(0)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)

        return bemt.bemt_axial(prop,
                               pitch,
                               o,
                               allowable_Re=allowable_Re,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               output='long',
                               alt=alt)

    omega = xstr[0]
    twist0 = xstr[1]
    chord0 = xstr[2]
    dtwist = xstr[3:3 + len(r) - 1]
    dchord = xstr[3 + len(r) - 1:]

    twist = calc_twist_dist(twist0, dtwist)
    chord = calc_chord_dist(chord0, dchord)

    print "chord = " + repr(chord)
    print "twist = " + repr(twist)

    # twist_base = calc_twist_dist(twist0_base, dtwist_base)
    # chord_base = calc_chord_dist(chord0_base, dchord_base)

    perf_opt = get_performance(omega, chord, twist)
    #perf_base = get_performance(omega_start, chord_base, twist_base)
    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "Thrust of optimized = " + str(sum(perf_opt[0]))
    print "Power of optimized = " + str(perf_opt[1])
    # print "Omega base = " + str(omega_start*60/2/np.pi)
    # print "Thrust of base = " + str(sum(perf_base[0]))
    # print "Power of base = " + str(sum(perf_base[1]))

    plt.figure(1)
    plt.plot(r, chord_start, '-b')
    plt.plot(r, chord, '-r')
    plt.xlabel('radial location')
    plt.ylabel('c/R')
    plt.legend(['start', 'opt'])

    plt.figure(2)
    plt.plot(r, twist_start * 180 / np.pi, '-b')
    plt.plot(r, twist * 180 / np.pi, '-r')
    plt.xlabel('radial location')
    plt.ylabel('twist')
    plt.legend(['start', 'opt'])

    plt.show()
Exemple #16
0
        f += -(c[i]*exp(-(1/pi)*((x[0]-a[i])**2 + (x[1]-b[i])**2))*cos(pi*((x[0]-a[i])**2 + (x[1]-b[i])**2)))
    #end
    
    g = [0.0]*1
    g[0] = 20.04895 - (x[0]+2.0)**2 - (x[1]+1.0)**2
    
    fail = 0
    
    return f,g,fail
    

# =============================================================================
# 
# =============================================================================
opt_prob = Optimization('Langermann Function 11',objfunc)
opt_prob.addVar('x1','c',lower=-2.0,upper=10.0,value=8.0)
opt_prob.addVar('x2','c',lower=-2.0,upper=10.0,value=8.0)
opt_prob.addObj('f')
opt_prob.addCon('g','i')
print opt_prob

# Global Optimization
nsga2 = NSGA2()
nsga2(opt_prob)
print opt_prob.solution(0)

# Local Optimization Refinement
slsqp = SLSQP()
slsqp(opt_prob.solution(0))
print opt_prob.solution(0).solution(0)
Exemple #17
0

# =============================================================================
#
# =============================================================================
opt_prob = Optimization('Rosenbrock Unconstraint Problem', objfunc)
opt_prob.addVar('x1', 'c', lower=-10.0, upper=10.0, value=-3.0)
opt_prob.addVar('x2', 'c', lower=-10.0, upper=10.0, value=-4.0)
opt_prob.addObj('f')
print(opt_prob)

# Instantiate Optimizer (PSQP) & Solve Problem
psqp = PSQP()
psqp.setOption('IPRINT', 0)
psqp(opt_prob, sens_type='FD')
print(opt_prob.solution(0))

# Instantiate Optimizer (SLSQP) & Solve Problem
slsqp = SLSQP()
slsqp.setOption('IPRINT', -1)
slsqp(opt_prob, sens_type='FD')
print(opt_prob.solution(1))

# Instantiate Optimizer (CONMIN) & Solve Problem
conmin = CONMIN()
conmin.setOption('IPRINT', 0)
conmin(opt_prob, sens_type='CS')
print(opt_prob.solution(2))

# Instantiate Optimizer (COBYLA) & Solve Problem
cobyla = COBYLA()
Exemple #18
0
def variogram_fit(SVExp, Sb=(0.01,400), Rb=(2,20), Nb=(0,400),
                  ab=(0,2), vb=(0,1000)):
    # Array with functions to be called from the Variograms library
    VarFunArr = [VariogramFit.SVExponential, VariogramFit.SVGaussian, 
                 VariogramFit.SVSpherical, VariogramFit.SVCubic,
                 VariogramFit.SVPentaspherical, VariogramFit.SVSinehole, 
                 VariogramFit.SVPower, VariogramFit.SVMatern]
    
    # Names of functions for display only
    optFunNam = ['Exponential','Gaussian','Spherical','Cubic',
                 'Pentaspherical','Sinehole','Power','Matern']
    
    # Boundaries semivariogram parameters
    #Sb = (0.01,400) # Limit for the sill
    #Rb = (2,20) # Limit for the range
    #Nb = (0,400) # Limit for the Nugget effect
    #ab = (0,2) # Limit for a in power variogram
    #vb = (0,1000) # Limit for Matern v parameters
    
    # Initial seed for variogram fit
    sr = random.uniform(Sb[0],Sb[1])
    rr = random.uniform(Rb[0],Rb[1])
    nr = random.uniform(Nb[0],Nb[1])
    ar = random.uniform(ab[0],ab[1])
    vr = random.uniform(vb[0],vb[1])
    return sr, rr, nr, ar, vr
    
    Var = []
    Res = []
    Mdl = [] 
    
    # Wrapper of minimisation function (RMSE) for semivariogram fitting
    def OptFun(x,*args):
        F, g, fail = VariogramFit.optFunMaster(x,SVExp,j,VarFunArr)
        if F == 9999:
            fail = 1
        else:
            Var.append(x)
            Res.append(F)
            Mdl.append(j)
        return F, g, fail
        
    print 'Initialising Variogram fit'
    print ''
    
    # Optimisation starts to minimise differences between experimental and 
    # theoretical semivariograms
    for j in xrange(0,len(VarFunArr)):
        
        print 'Variogram Fitting ' + optFunNam[j]
        print ''
        
        VarProb = Optimization('Variogram Fitting: ' + optFunNam[j], OptFun)
        VarProb.addObj('RMSE')
        VarProb.addVar('Sill','c',lower=Sb[0],upper=Sb[1],value=sr)
        VarProb.addVar('Range','c',lower=Rb[0],upper=Rb[1],value=rr)
        VarProb.addVar('Nugget','c',lower=Nb[0],upper=Nb[1],value=nr)
        VarProb.addVar('Exponent (a)','c',lower=ab[0],upper=ab[1],value=ar)
        VarProb.addVar('Rank (v)','c',lower=vb[0],upper=vb[1],value=vr)
        
        args = (SVExp, j, VarFunArr, Var, Res, Mdl)
        optmz = ALHSO()
        optmz(VarProb)
    
        print VarProb.solution(0)
        print ''    
    
    # Get position of best semivariogram
    k = numpy.argmin(Res)
    xopt = Var[k]
    ModOpt = Mdl[k]
    del Var
    del Res
    del Mdl
    
    print 'Theoretical variogram fit - Done!'
    print ''
    return xopt, ModOpt, VarFunArr
    def execute(self):
        """pyOpt execution. Note that pyOpt controls the execution, and the
        individual optimizers control the iteration."""

        self.pyOpt_solution = None

        self.run_iteration()

        opt_prob = Optimization(self.title, self.objfunc, var_set={},
                                obj_set={}, con_set={})

        # Add all parameters
        self.param_type = {}
        self.nparam = self.total_parameters()
        for name, param in self.get_parameters().iteritems():

            # We need to identify Enums, Lists, Dicts
            metadata = param.get_metadata()[1]
            values = param.evaluate()

            # Assuming uniform enumerated, discrete, or continuous for now.
            val = values[0]
            choices = []
            if 'values' in metadata and \
               isinstance(metadata['values'], (list, tuple, array, set)):
                vartype = 'd'
                choices = metadata['values']
            elif isinstance(val, bool):
                vartype = 'd'
                choices = [True, False]
            elif isinstance(val, (int, int32, int64)):
                vartype = 'i'
            elif isinstance(val, (float, float32, float64)):
                vartype = 'c'
            else:
                msg = 'Only continuous, discrete, or enumerated variables' \
                      ' are supported. %s is %s.' % (name, type(val))
                self.raise_exception(msg, ValueError)
            self.param_type[name] = vartype

            names = param.names
            lower_bounds = param.get_low()
            upper_bounds = param.get_high()
            for i in range(param.size):
                opt_prob.addVar(names[i], vartype,
                                lower=lower_bounds[i], upper=upper_bounds[i],
                                value=values[i], choices=choices)
        # Add all objectives
        for name in self.get_objectives():
            opt_prob.addObj(name)

        # Add all equality constraints
        for name, con in self.get_eq_constraints().items():
            if con.size > 1:
                for i in range(con.size):
                    opt_prob.addCon('%s [%s]' % (name, i), type='e')
            else:
                opt_prob.addCon(name, type='e')

        # Add all inequality constraints
        for name, con in self.get_ineq_constraints().items():
            if con.size > 1:
                for i in range(con.size):
                    opt_prob.addCon('%s [%s]' % (name, i), type='i')
            else:
                opt_prob.addCon(name, type='i')

        self.inputs = self.list_param_group_targets()
        self.objs = self.list_objective_targets()
        self.cons = self.list_constraint_targets()

        # Instantiate the requested optimizer
        optimizer = self.optimizer
        try:
            exec('from pyOpt import %s' % optimizer)
        except ImportError:
            msg = "Optimizer %s is not available in this installation." % \
                   optimizer
            self.raise_exception(msg, ImportError)

        optname = vars()[optimizer]
        opt = optname()

        # Set optimization options
        for option, value in self.options.iteritems():
            opt.setOption(option, value)

        # Execute the optimization problem
        if self.pyopt_diff:
            # Use pyOpt's internal finite difference
            opt(opt_prob, sens_type='FD', sens_step=self.gradient_options.fd_step,
                store_hst=self.store_hst, hot_start=self.hot_start)
        else:
            # Use OpenMDAO's differentiator for the gradient
            opt(opt_prob, sens_type=self.gradfunc, store_hst=self.store_hst,
                hot_start=self.hot_start)

        # Print results
        if self.print_results:
            print opt_prob.solution(0)

        # Pull optimal parameters back into framework and re-run, so that
        # framework is left in the right final state
        dvals = []
        for i in range(0, len(opt_prob.solution(0)._variables)):
            dvals.append(opt_prob.solution(0)._variables[i].value)

        # Integer parameters come back as floats, so we need to round them
        # and turn them into python integers before setting.
        if 'i' in self.param_type.values():
            for j, param in enumerate(self.get_parameters().keys()):
                if self.param_type[param] == 'i':
                    dvals[j] = int(round(dvals[j]))

        self.set_parameters(dvals)
        self.run_iteration()

        # Save the most recent solution.
        self.pyOpt_solution = opt_prob.solution(0)
    def execute(self):
        """pyOpt execution. Note that pyOpt controls the execution, and the
        individual optimizers control the iteration."""

        self.pyOpt_solution = None

        opt_prob = Optimization(self.title, self.objfunc, var_set={}, obj_set={}, con_set={})

        # Add all parameters
        self.param_type = {}
        for name, param in self.get_parameters().iteritems():

            # We need to identify Enums, Lists, Dicts
            metadata = param.get_metadata()[0][1]
            values = param.evaluate()

            # Assuming uniform enumerated, discrete, or continuous for now.
            val = values[0]
            choices = []
            if "values" in metadata and isinstance(metadata["values"], (list, tuple, array, set)):
                vartype = "d"
                choices = metadata["values"]
            elif isinstance(val, bool):
                vartype = "d"
                choices = [True, False]
            elif isinstance(val, (int, int32, int64)):
                vartype = "i"
            elif isinstance(val, (float, float32, float64)):
                vartype = "c"
            else:
                msg = "Only continuous, discrete, or enumerated variables" " are supported. %s is %s." % (
                    name,
                    type(val),
                )
                self.raise_exception(msg, ValueError)
            self.param_type[name] = vartype

            names = param.names
            lower_bounds = param.get_low()
            upper_bounds = param.get_high()
            for i in range(param.size):
                opt_prob.addVar(
                    names[i], vartype, lower=lower_bounds[i], upper=upper_bounds[i], value=values[i], choices=choices
                )
        # Add all objectives
        for name in self.get_objectives():
            opt_prob.addObj(name)

        # Add all equality constraints
        for name in self.get_eq_constraints():
            opt_prob.addCon(name, type="e")

        # Add all inequality constraints
        for name in self.get_ineq_constraints():
            opt_prob.addCon(name, type="i")

        # Instantiate the requested optimizer
        optimizer = self.optimizer
        try:
            exec ("from pyOpt import %s" % optimizer)
        except ImportError:
            msg = "Optimizer %s is not available in this installation." % optimizer
            self.raise_exception(msg, ImportError)

        optname = vars()[optimizer]
        opt = optname()

        # Set optimization options
        for option, value in self.options.iteritems():
            opt.setOption(option, value)

        # Execute the optimization problem
        if self.pyopt_diff:
            # Use pyOpt's internal finite difference
            opt(opt_prob, sens_type="FD")
        else:
            # Use OpenMDAO's differentiator for the gradient
            opt(opt_prob, sens_type=self.gradfunc)

        # Print results
        if self.print_results:
            print opt_prob.solution(0)

        # Pull optimal parameters back into framework and re-run, so that
        # framework is left in the right final state
        dvals = []
        for i in range(0, len(opt_prob.solution(0)._variables)):
            dvals.append(opt_prob.solution(0)._variables[i].value)

        # Integer parameters come back as floats, so we need to round them
        # and turn them into python integers before setting.
        if "i" in self.param_type.values():
            for j, param in enumerate(self.get_parameters().keys()):
                if self.param_type[param] == "i":
                    dvals[j] = int(round(dvals[j]))

        self.set_parameters(dvals)
        self.run_iteration()
        self.record_case()

        # Save the most recent solution.
        self.pyOpt_solution = opt_prob.solution(0)
Exemple #21
0
# Instantiate Optimization Problem 
opt_prob = Optimization('TP37 Constrained Problem',objfunc)
opt_prob.addVar('x1','c',lower=0.0,upper=42.0,value=10.0)
opt_prob.addVar('x2','c',lower=0.0,upper=42.0,value=10.0)
opt_prob.addVar('x3','c',lower=0.0,upper=42.0,value=10.0)
opt_prob.addObj('f')
opt_prob.addCon('g1','i')
opt_prob.addCon('g2','i')
print(opt_prob)

# Instantiate Optimizer (PSQP) & Solve Problem
psqp = PSQP()
psqp.setOption('IPRINT',0)
psqp(opt_prob,sens_type='FD')
print(opt_prob.solution(0))

# Instantiate Optimizer (SLSQP) & Solve Problem
slsqp = SLSQP()
slsqp.setOption('IPRINT',-1)
slsqp(opt_prob,sens_type='FD')
print(opt_prob.solution(1))

# Instantiate Optimizer (CONMIN) & Solve Problem
conmin = CONMIN()
conmin.setOption('IPRINT',0)
conmin(opt_prob,sens_type='CS')
print(opt_prob.solution(2))

# Instantiate Optimizer (COBYLA) & Solve Problem
cobyla = COBYLA()
Exemple #22
0
    
    fail = 0
    
    return f,g,fail
    

# =============================================================================
# 
# ============================================================================= 

# Instantiate Optimization Problem
opt_prob = Optimization('TOY Constrained Problem',objfunc,use_groups=True)
opt_prob.addVarGroup('a',2,'c',value=1.0, lower=0.0, upper=10)
opt_prob.delVarGroup('a')
opt_prob.addVar('x','c',value=1.0, lower=0.0, upper=10)
opt_prob.addVarGroup('y',2,'c',value=1.0, lower=0.0, upper=10)
opt_prob.delVarGroup('y')
opt_prob.addVarGroup('z',1,'c',value=1.0, lower=0.0, upper=10)
opt_prob.addVarGroup('b',5,'c',value=3.0, lower=0.0, upper=10)
opt_prob.delVarGroup('b')
opt_prob.addObj('f')
opt_prob.addCon('g1','i')
opt_prob.addCon('g2','i')
print(opt_prob)

# Instantiate Optimizer (SLSQP) & Solve Problem
slsqp = SLSQP()
slsqp(opt_prob)
print(opt_prob.solution(0))

Exemple #23
0
# =============================================================================
# 
# =============================================================================

# Instantiate Optimization Problem
opt_prob = Optimization('Constrained Rosen-Suzuki',objfunc)
opt_prob.addVar('x1','c',value=1.5)
opt_prob.addVar('x2','c',value=1.5)
opt_prob.addVar('x3','c',value=1.5)
opt_prob.addVar('x4','c',value=1.5)
opt_prob.addObj('f')
opt_prob.addCon('g1','i')
opt_prob.addCon('g2','i')
opt_prob.addCon('g3','i')
print(opt_prob)

# Instantiate Optimizer (CONMIN)
conmin = CONMIN()

# Solve Problem with Optimizer Using Finite Differences
conmin(opt_prob,sens_type='FD')
print(opt_prob.solution(0))

# Solve Problem with Optimizer Using Complex Step
conmin(opt_prob,sens_type='CS')
print(opt_prob.solution(1))

# Solve Problem with Optimizer Using User-Provided Sensitivities
conmin(opt_prob,sens_type=gradfunc)
print(opt_prob.solution(2))
Exemple #24
0
from pyOpt import Optimization, NSGA2


def objfunc(x):

    f = -x[0] * x[1] * x[2]
    h = -x[0] * x[2]
    g = [0.0] * 2
    g[0] = x[0] + 2. * x[1] + 2. * x[2] - 72.0
    g[1] = -x[0] - 2. * x[1] - 2. * x[2]

    fail = 0
    return f, h, g, fail


# Instantiate Optimization Problem
opt_prob = Optimization('TP37 Constrained Problem', objfunc)
opt_prob.addVar('x1', 'c', lower=0.0, upper=42.0, value=10.0)
opt_prob.addVar('x2', 'c', lower=0.0, upper=42.0, value=10.0)
opt_prob.addVar('x3', 'c', lower=0.0, upper=42.0, value=10.0)
opt_prob.addObj('f')
opt_prob.addObj('h')
opt_prob.addCon('g1', 'i')
opt_prob.addCon('g2', 'i')
print(opt_prob)

nsga2 = NSGA2()
nsga2.setOption('PrintOut', 0)
nsga2(opt_prob)
print(opt_prob.solution(0))
Exemple #25
0
def variogram_fit(SVExp,
                  Sb=(0.01, 400),
                  Rb=(2, 20),
                  Nb=(0, 400),
                  ab=(0, 2),
                  vb=(0, 1000)):
    # Array with functions to be called from the Variograms library
    VarFunArr = [
        VariogramFit.SVExponential, VariogramFit.SVGaussian,
        VariogramFit.SVSpherical, VariogramFit.SVCubic,
        VariogramFit.SVPentaspherical, VariogramFit.SVSinehole,
        VariogramFit.SVPower, VariogramFit.SVMatern
    ]

    # Names of functions for display only
    optFunNam = [
        'Exponential', 'Gaussian', 'Spherical', 'Cubic', 'Pentaspherical',
        'Sinehole', 'Power', 'Matern'
    ]

    # Boundaries semivariogram parameters
    #Sb = (0.01,400) # Limit for the sill
    #Rb = (2,20) # Limit for the range
    #Nb = (0,400) # Limit for the Nugget effect
    #ab = (0,2) # Limit for a in power variogram
    #vb = (0,1000) # Limit for Matern v parameters

    # Initial seed for variogram fit
    sr = random.uniform(Sb[0], Sb[1])
    rr = random.uniform(Rb[0], Rb[1])
    nr = random.uniform(Nb[0], Nb[1])
    ar = random.uniform(ab[0], ab[1])
    vr = random.uniform(vb[0], vb[1])
    return sr, rr, nr, ar, vr

    Var = []
    Res = []
    Mdl = []

    # Wrapper of minimisation function (RMSE) for semivariogram fitting
    def OptFun(x, *args):
        F, g, fail = VariogramFit.optFunMaster(x, SVExp, j, VarFunArr)
        if F == 9999:
            fail = 1
        else:
            Var.append(x)
            Res.append(F)
            Mdl.append(j)
        return F, g, fail

    print 'Initialising Variogram fit'
    print ''

    # Optimisation starts to minimise differences between experimental and
    # theoretical semivariograms
    for j in xrange(0, len(VarFunArr)):

        print 'Variogram Fitting ' + optFunNam[j]
        print ''

        VarProb = Optimization('Variogram Fitting: ' + optFunNam[j], OptFun)
        VarProb.addObj('RMSE')
        VarProb.addVar('Sill', 'c', lower=Sb[0], upper=Sb[1], value=sr)
        VarProb.addVar('Range', 'c', lower=Rb[0], upper=Rb[1], value=rr)
        VarProb.addVar('Nugget', 'c', lower=Nb[0], upper=Nb[1], value=nr)
        VarProb.addVar('Exponent (a)', 'c', lower=ab[0], upper=ab[1], value=ar)
        VarProb.addVar('Rank (v)', 'c', lower=vb[0], upper=vb[1], value=vr)

        args = (SVExp, j, VarFunArr, Var, Res, Mdl)
        optmz = ALHSO()
        optmz(VarProb)

        print VarProb.solution(0)
        print ''

    # Get position of best semivariogram
    k = numpy.argmin(Res)
    xopt = Var[k]
    ModOpt = Mdl[k]
    del Var
    del Res
    del Mdl

    print 'Theoretical variogram fit - Done!'
    print ''
    return xopt, ModOpt, VarFunArr
Exemple #26
0
	g[1] = 2 - x[1]
	
	fail = 0
	
	return f,g,fail
	

# =============================================================================
# 
# =============================================================================

# Instanciate Optimization Problem 
opt_prob = Optimization('TOY Constraint Problem',objfunc)
opt_prob.addVar('x1','c',value=1.0,lower=0.0,upper=10.0)
opt_prob.addVar('x2','c',value=1.0,lower=0.0,upper=10.0)
opt_prob.addObj('f')
opt_prob.addCon('g1','i')
opt_prob.addCon('g2','i')
print opt_prob

# Instanciate Optimizer (ALPSO) & Solve Problem Storing History
slsqp = SLSQP()
slsqp.setOption('IFILE','slsqp1.out')
slsqp(opt_prob,store_hst=True)
print opt_prob.solution(0)

# Solve Problem Using Stored History (Warm Start)
slsqp.setOption('IFILE','slsqp2.out')
slsqp(opt_prob, store_hst=True, hot_start='slsqp1')
print opt_prob.solution(1)
Exemple #27
0
    

# =============================================================================
# 
# ============================================================================= 
opt_prob = Optimization('Rosenbrock Unconstraint Problem',objfunc)
opt_prob.addVar('x1','c',lower=-10.0,upper=10.0,value=-3.0)
opt_prob.addVar('x2','c',lower=-10.0,upper=10.0,value=-4.0)
opt_prob.addObj('f')
print opt_prob

# Instantiate Optimizer (PSQP) & Solve Problem
psqp = PSQP()
psqp.setOption('IPRINT',0)
psqp(opt_prob,sens_type='FD')
print opt_prob.solution(0)

# Instantiate Optimizer (SLSQP) & Solve Problem
slsqp = SLSQP()
slsqp.setOption('IPRINT',-1)
slsqp(opt_prob,sens_type='FD')
print opt_prob.solution(1)

# Instantiate Optimizer (CONMIN) & Solve Problem
conmin = CONMIN()
conmin.setOption('IPRINT',0)
conmin(opt_prob,sens_type='CS')
print opt_prob.solution(2)

# Instantiate Optimizer (COBYLA) & Solve Problem
cobyla = COBYLA()
Exemple #28
0
# Instantiate Optimization Problem 
opt_prob = Optimization('TP37 Constrained Problem',objfunc)
opt_prob.addVar('x1','c',lower=0.0,upper=42.0,value=10.0)
opt_prob.addVar('x2','c',lower=0.0,upper=42.0,value=10.0)
opt_prob.addVar('x3','c',lower=0.0,upper=42.0,value=10.0)
opt_prob.addObj('f')
opt_prob.addCon('g1','i')
opt_prob.addCon('g2','i')

# Solve Problem (No-Parallelization)
nlpqlp_none = NLPQLP()
nlpqlp_none.setOption('IPRINT',0)
nlpqlp_none(opt_prob)
if myrank == 0:
    print(opt_prob.solution(0))
#end

# Solve Problem (Parallel Gradient)
nlpqlp_pgc = NLPQLP()
nlpqlp_pgc.setOption('IPRINT',0)
nlpqlp_pgc(opt_prob,sens_mode='pgc')
if myrank == 0:
    print(opt_prob.solution(1))
#end

# Solve Problem (Parallel Line Search)
nlpqlp_spm = NLPQLP(pll_type='SPM')
nlpqlp_spm.setOption('IPRINT',0)
nlpqlp_spm(opt_prob)
print(opt_prob.solution(2))
Exemple #29
0
    fail = 0

    return f, g, fail


opt_prob = Optimization('Rosenbrock Unconstrained Problem', objfun)
opt_prob.addVar('x1', 'c', lower=-10.0, upper=10.0, value=0.0)
opt_prob.addVar('x2', 'c', lower=-10.0, upper=10.0, value=0.0)
opt_prob.addObj('f')
print opt_prob

# Instantiate optimizer (PSQP) and solve problem
psqp = PSQP()
psqp.setOption('IPRINT', 0)
psqp(opt_prob, sens_type='FD')
print opt_prob.solution(0)

# Instantiate optimizer (SLSQP) and solve problem
slsqp = SLSQP()
slsqp.setOption('IPRINT', -1)
slsqp(opt_prob, sens_type='FD')
print opt_prob.solution(1)

# Instantiate optimizer (CONMIN) and solve problem
conmin = CONMIN()
conmin.setOption('IPRINT', 0)
conmin(opt_prob, sens_type='CS')
print opt_prob.solution(2)

# Instantiate optimizer (COBYLA) and solve problem
cobyla = COBYLA()
    # Add functions
    opt_prob.addObj('weight')
    opt_prob.addCon('buckling-bar1', type='i')
    opt_prob.addCon('failure-bar1', type='i')
    opt_prob.addCon('failure-bar2', type='i')

    # Add variables
    opt_prob.addVar('area-1', type='c', value=1.0, lower=1.0e-3, upper=2.0)
    opt_prob.addVar('area-2', type='c', value=1.0, lower=1.0e-3, upper=2.0)
    opt_prob.addVar('height', type='c', value=4.0, lower=4.0, upper=10.0)

    # Optimization algorithm
    if args.algorithm == 'ALGENCAN':
        opt = ALGENCAN()
        opt.setOption('iprint', 2)
        opt.setOption('epsfeas', 1e-6)
        opt.setOption('epsopt', 1e-6)
    else:
        opt = SLSQP(pll_type='POA')
        opt.setOption('MAXIT', 999)

    opt(opt_prob,
        sens_type=optproblem.evalObjConGradient,
        disp_opts=True,
        store_hst=True,
        hot_start=False)

    if optproblem.comm.Get_rank() == 0:
        print opt_prob.solution(0)
        opt_prob.write2file(disp_sols=True)
class GP_SS(Algorithm):
    """ Implementation of Building Identification and Control using Gaussian Process
    State-Space models. A GP regression model per state is created and then the 
    constrained optimization problem is solved using PyOpt's SLSQP solver."""
    def __init__(self):
        """Initialize the GP_SS algorithm for a specific building.
        """
        print("Initializing the GP_SS...")
        self.building = Building()
        self.X = []
        self.Y = []
        self.dynModels = []
        # Number of Initial Exploration Simulation
        self.initExploration = 36
        # Number of Samples for witching to Sparse Gaussian Processes
        self.num_inducing = 2000
        # Safety constraint for exploration
        self.explorationConstraint = 0.03

        # Needed to determine the best controller out of all iterations
        self.costs = []
        self.constraints = []
        self.policies = []
        self.baseline = []

    def configure(self, building):
        # Get building and optimization setup properties
        self.building = deepcopy(building)
        self.T, self.states, self.actions, self.disturbances, self.controlLim, self.actionLim, self.comfort, self.occ, self.nvars, self.ncons = self.building.getConfiguration(
        )

        # Run initial random simulations and contstruct initial dataset
        for ii in range(0, self.initExploration):
            self.building.rand = 1
            xa, cf, cc = self.building.simulate(self.building.policy)
            xx = xa[0:-1, ]
            yy = xa[1:, self.states]
            if (ii == 0):
                self.X = xx
                self.Y = yy
            else:
                self.X = np.concatenate((self.X, xx), axis=0)
                self.Y = np.concatenate((self.Y, yy), axis=0)

        # Last simulation is the baseline controller
        self.building.rand = 0
        xa, cf, cc = self.building.simulate(self.building.policy)
        self.baseline.append(self.building.policy)
        self.baseline.append(np.sum(cf))
        self.baseline.append(np.sum(cc))
        xx = xa[0:-1, ]
        yy = xa[1:, self.states]
        self.X = np.concatenate((self.X, xx), axis=0)
        self.Y = np.concatenate((self.Y, yy), axis=0)

    def optimize(self, options):
        # Set max number of optimization iterations
        maxIter = 1
        if (len(options) > 0):
            maxIter = options["MAXIT"]

        # Log costs and constraints for all internal iterations
        self.costs = np.zeros((maxIter + 1, 1))
        self.constraints = np.zeros((maxIter + 1, self.ncons))
        self.policies = np.zeros((maxIter + 1, self.nvars))

        # GP_SS process
        initPolicy = self.building.policy.copy()
        for ii in range(maxIter):
            # Train GP state-space models
            kernel = GPy.kern.Matern52(self.X.shape[1], ARD=False)
            for jj in range(0, len(self.states)):
                if (self.X.shape[0] > self.num_inducing):
                    print("Using Sparse GP Model...")
                    dynModel = GPy.models.SparseGPRegression(
                        self.X,
                        self.Y[:, jj].reshape(self.Y.shape[0], 1),
                        kernel,
                        num_inducing=self.num_inducing)
                    self.dynModels.append(dynModel.copy())
                else:
                    print("Using Full GP Model...")
                    dynModel = GPy.models.GPRegression(
                        self.X, self.Y[:, jj].reshape(self.Y.shape[0], 1),
                        kernel)
                    dynModel.optimize_restarts(num_restarts=2)
                    dynModel.optimize('bfgs', messages=True, max_iters=5000)
                    self.dynModels.append(dynModel.copy())
                print(self.dynModels[jj])
                self.checkModelAccuracy(dynModel, self.X, self.Y[:, jj])

            # Define Box Constraints (min/max values) for the control parameters
            boxConstraints = []
            for jj in range(self.nvars):
                boxConstraints.append(self.controlLim)

            # Link to the python function calculating the cost and the constraints. Note that
            # this is not the actual simulation, but the propagate function
            self.opt_prob = Optimization('GPSS_SLSQP Constrained Problem',
                                         self.propagate)

            # Setupt Box Constrains in pyOpt
            for jj in range(self.nvars):
                self.opt_prob.addVar('x' + str(jj + 1),
                                     'c',
                                     lower=boxConstraints[jj][0],
                                     upper=boxConstraints[jj][1],
                                     value=self.building.policy[0, jj])

            # Setupt Cost Function in pyOpt
            self.opt_prob.addObj('f')

            # Setupt Inequality Constraints in pyOpt
            for jj in range(self.ncons + 1):
                self.opt_prob.addCon('g' + str(jj + 1), 'i')

            # Print the Optimization setup
            print("----------------------------------------")
            print("----------------------------------------")
            print("GPSS_SLSQP Optimization setup:")
            print(self.opt_prob)

            optionsSLSQP = {'ACC': 1.0e-20, 'MAXIT': 10000, 'IPRINT': 1}
            # Set SLSQP as the optimizer
            self.opt = SLSQP()

            # Set optimization options
            for jj in range(len(optionsSLSQP)):
                self.opt.setOption(optionsSLSQP.keys()[jj],
                                   optionsSLSQP.values()[jj])

            # Print the Optimizer Options
            print("----------------------------------------")
            print("----------------------------------------")
            print("SLSQP Optimizer options:")
            print(self.opt.options)

            # Get optimized controller
            self.opt(self.opt_prob, sens_step=1e-6)
            print(self.opt_prob.solution(0))
            a = self.opt_prob.solution(0)
            for jj in range(self.building.policy.shape[1]):
                self.building.policy[0, jj] = a.getVar(jj).value

            # Evaluate the optimized controller in the simulation model
            xa, cf, cc = self.building.simulate(self.building.policy)
            print("COST: = =========== " + str(np.sum(cf)))
            print("CONSTRAINT: = =========== " + str(np.sum(cc)))
            xx = xa[0:-1, ]
            yy = xa[1:, self.states]
            if (ii == 0):
                self.X = xx
                self.Y = yy
            else:
                self.X = np.concatenate((self.X, xx), axis=0)
                self.Y = np.concatenate((self.Y, yy), axis=0)

            self.costs[ii, 0] = np.sum(cf)
            for jj in range(self.ncons):
                self.constraints[ii, jj] = np.sum(cc[:, jj])

            self.policies[ii, :] = self.building.policy.copy()

            self.building.policy = initPolicy.copy()

        self.policies[ii + 1, :] = self.baseline[0].copy()
        self.costs[ii + 1, 0] = self.baseline[1]
        self.constraints[ii + 1, 0] = self.baseline[2]

        policyIndex = self.selectBestController(self.costs, self.constraints)
        self.building.policy = self.policies[policyIndex, :].copy()

        return self.building.policy

    def selectBestController(self, costs, constraints):
        """A function that selects the best controller out of a set of controllers, 
        based on their performance on the cost function and the constraints.
        Args: 
            costs (numpy array): The resulting cost of each controller, as evaluated
            on the simulation model
            constraints (numpy array): The resulting constraints of each controller, as evaluated
            on the simulation model
            
        Returns: 
            policyIndex (float): the index of the best controller
        """
        wCost = 1
        wConstraints = 10000000
        p = np.zeros((costs.shape[0], 1))
        for ii in range(costs.shape[0]):
            p[ii, 0] = p[ii, 0] + wCost * costs[ii, 0]
            for jj in range(constraints.shape[1]):
                p[ii, 0] = p[ii, 0] + wConstraints * constraints[ii, jj]
        policyIndex = np.argmin(p)
        return policyIndex

    def propagate(self, policy):
        """A function that uses the GP state-space models identified from the data 
        to perform rollouts based on a given controller.
        Args: 
            policy (numpy array): the controller to be used for the rollout
            
        Returns: 
            f (float): the cost function value
            g (list): the vales of all constraints
            fail (0/1): indicates if the function finished successfully
        """

        # Initial state
        xx = np.zeros((self.building.T + 1,
                       len(self.building.states) + self.building.w.shape[1]))
        uu = np.zeros((self.building.T + 1, len(self.building.actions)))
        cc = np.zeros((self.building.T + 1, 1))
        cf = np.zeros((self.building.T + 1, 1))
        var = np.zeros((self.building.T, len(self.building.states)))
        xx[0, ] = self.X[0, 0:2]  # [17, w[0,]]
        uu[0, ] = self.building.controller(policy, xx[0, ], 0)
        cc[0, ] = self.building.comfortConstraints(xx[0, self.building.states],
                                                   0)
        cf[0, ] = self.building.costFunction(uu[0, ], 0)

        # state propagation using the provided controller
        for ii in range(1, self.building.T + 1):
            newX = np.hstack([xx[ii - 1, ],
                              uu[ii - 1]]).reshape(1,
                                                   xx.shape[1] + uu.shape[1])
            for jj in range(0, len(self.building.states)):
                results = self.dynModels[jj].predict(newX)
                xx[ii, jj] = results[0]
                var[ii - 1, jj] = results[1]
            xx[ii, 1] = self.building.w[ii, ]
            uu[ii, ] = self.building.controller(policy, xx[ii, ], ii)
            cc[ii, ] = self.building.comfortConstraints(
                xx[ii, self.building.states], ii)
            cf[ii, ] = self.building.costFunction(uu[ii, ], ii)

        f = np.sum(cf)
        g = []
        g.append(np.mean(var) -
                 self.explorationConstraint)  # Exploration constraint
        g.append(np.sum(cc))
        fail = 0

        return f, g, fail

    def checkModelAccuracy(self, dynModel, xtest, ytest):
        """A function that evaluates the accuracy of the GP state-space model.
        Args: 
            dynModel (GPy object): The GP model
            xtest (numpy array): The features of the regression 
            ytest (numpy array): The targets of the regression
        """

        results = dynModel.predict(xtest)
        ypred = results[0]
        #        sGP = results[1]

        rsqTrain, maeTrain, rsqAdjTrain = self.evaluateGoodnessOfFit(
            xtest, ytest, ypred)
        print("Rsq train Gaussian Processes Regression = " + str(rsqTrain))
        print("Rsq Adjusted train Gaussian Processes Regression = " +
              str(rsqAdjTrain))
        print("MAE train Gaussian Processes Regression = " + str(maeTrain))

    def evaluateGoodnessOfFit(self, x, y, ypred):
        """A function that evaluates the goodness of fit, under different measures.
        Args: 
            x (numpy array): The features of the regression 
            y (numpy array): The targets of the regression
            ypred (numpy array): The predictions of the regression model
        
        Returns: 
            Rsquared (float): R-squared
            mae (float): Mean Absolute Error
            rsqAdj (float): The Adjusted R-square
        """

        print(y.shape[0])
        print(x.shape[1])
        y_hat = np.mean(y)
        SStot = np.sum(np.power(y - y_hat, 2))
        SSres = np.sum(np.power(y - ypred.flatten(), 2))
        if (SStot == 0):
            rsq = 1
        else:
            rsq = 1 - SSres / SStot
        mae = np.sum(np.abs(y - ypred.flatten())) / ypred.shape[0]

        rsqAdj = 1 - (1 - rsq) * (y.shape[0] - 1) / (y.shape[0] - x.shape[1] -
                                                     1)

        return rsq, mae, rsqAdj

    def wrapSimulation(self, policy):
        """A function that runs a building simulation and wraps the results in the 
        format required by PyOpt library.
        Args: 
            policy (numpy array): the controller to be used for the simulation
            
        Returns: 
            f (float): the cost function value
            g (list): the vales of all constraints
            fail (0/1): indicates if the function finished successfully
        """
        # Cost and Constraints
        f = 0
        g = []
        fail = 0

        # Run building simulation
        x, cost, constraints = self.building.simulate(policy)
        f = np.sum(cost)
        g.append(np.sum(constraints))

        #        print(f)
        #        print(g[0])

        return f, g, fail