Exemple #1
0
curr1 = np.array([])
curr2 = np.array([])

for WorkFunction in [WorkFunction]:
    i = 0
    for V in Voltages:
        if (V != 0.0):
            nV = int(abs(V / eta) + 1)
            print("Voltage: ", V, "; number of integration steps: ", nV)
            for eta in [eta]:
                current0 = PS.dIdV(V,
                                   WorkFunction,
                                   eta,
                                   eigEn,
                                   tip_r2,
                                   Ratin,
                                   coefs,
                                   orbs=orbs,
                                   s=1.0,
                                   px=0.0,
                                   py=0.0,
                                   pz=0.0)
                WF_decay = 1  # ( tunnelling barrier changes 1:1 with applied sample bias)
                current1 = PS.STM(V,
                                  nV,
                                  WorkFunction,
                                  eta,
                                  eigEn,
                                  tip_r2,
                                  Ratin,
                                  coefs,
                                  orbs=orbs,
Exemple #2
0
didv_b = False
STM_b = False
states_b = False

if ((scan_type == 'didv') or (scan_type == 'dIdV')
        or (scan_type == 'didv-single')):
    didv = np.array([
        PS.dIdV(V,
                WorkFunction,
                eta,
                eigEn,
                tip_r,
                Ratin,
                coefs,
                orbs=sample_orbs,
                s=tc[0],
                px=tc[1],
                py=tc[2],
                pz=tc[3],
                dz2=tc[4],
                dxz=tc[5],
                dyz=tc[6])
    ])
    didv_b = True
    WF_decay = 0.0
    #print "DEBUG: didv.shape ", didv.shape
elif ((scan_type == 'states') or (scan_type == 'STATES')):
    states = np.sort(eigEn)
    mask = states >= V
    states = states[mask]
Exemple #3
0
# print "DEBUG: eigEn.shape ", eigEn.shape
# print "DEBUG: coefs.shape ", coefs.shape
# print "DEBUG: Ratin.shape ", Ratin.shape

print("energies prepared, coeffecients read")

# --- the Main calculations --- #
# 'didv'='dIdV''='didv-single' -- only dIdV for one voltage = V ; 'v-scan'='V-scan'='Voltage-scan' -- both STM & dIdV scan - V .. Vmax; 'STM'='STM-single' -- STM for one Voltage = V, use V-scan rather #

didv_b = False
STM_b = False
states_b = False

if ((scan_type == 'didv') or (scan_type == 'dIdV') or (scan_type == 'didv-single')):
    didv = np.array([PS.dIdV(V,    WorkFunction, eta, eigEn, tip_r, Ratin, coefs, orbs=sample_orbs,
                    s=tc[0], px=tc[1], py=tc[2], pz=tc[3], dz2=tc[4], dxz=tc[5], dyz=tc[6])])
    didv_b = True; WF_decay = 0.0;
    # print "DEBUG: didv.shape ", didv.shape
elif ((scan_type == 'states') or (scan_type == 'STATES')):
    states = np.sort(eigEn); mask = states >= V; states = states[mask]; del mask;
    mask = states <= V_max; states = states[mask]; del mask;
    fst = True
    print("DEBUG: states:", states)
    for isi in states:
        if fst:
            didv = np.array([PS.dIdV(isi, WorkFunction, eta, eigEn, tip_r, Ratin, coefs, orbs=sample_orbs,
                             s=tc[0], px=tc[1], py=tc[2], pz=tc[3], dz2=tc[4], dxz=tc[5], dyz=tc[6])])
            fst = False
        else:
            didv = np.append(didv, [PS.dIdV(isi,    WorkFunction, eta, eigEn, tip_r, Ratin, coefs, orbs=sample_orbs,
                             s=tc[0], px=tc[1], py=tc[2], pz=tc[3], dz2=tc[4], dxz=tc[5], dyz=tc[6])], axis=0)