plt.figure()
plt.imshow(UC[0,:,:],interpolation='nearest',cmap='binary')
plt.imshow(UC[1,:,:],interpolation='nearest',cmap='binary',alpha=.5)
plt.imshow(UC[2,:,:],interpolation='nearest',cmap='binary',alpha=.5)
plt.imshow(UC[3,:,:],interpolation='nearest',cmap='binary',alpha=.5)

Ms,xcoords,ycoords,radii = pss.copypasteUC(UC,UCX,UCY,RAD,MATS)

Ms = pss.mat_assignment(mats,xcoords,ycoords,radii)
#plt.figure()
#plt.imshow(pss.materials[0,:,:],interpolation='nearest',cmap='binary')
#plt.imshow(pss.materials[1,:,:],interpolation='nearest',cmap='binary',alpha=.5)
#plt.imshow(pss.materials[2,:,:],interpolation='nearest',cmap='binary',alpha=.5)
#plt.imshow(pss.materials[3,:,:],interpolation='nearest',cmap='binary',alpha=.5)
#plt.show()

S = float(np.sum(UC)-4*3)#There are 4 particles and 3 cells overlap per particle
print "Approximate Volume Fraction = {:3.1f}".format(S/float(lx*ly))

A,B = pss.part_distance(xcoords,ycoords,radii,Ms,plot=True)
xcoords *= GRIDSPC
ycoords *= GRIDSPC
radii   *= GRIDSPC
pss.save_spherical_parts(xcoords,ycoords,radii,Ms,A)
#pss.view_mesoiSALE('meso_A-0.8000.iSALE')
#pss.save_general_mesh(mixed=False)

Exemple #2
0
xcr     *= GRIDSPC
ycr     *= GRIDSPC
zcr     *= GRIDSPC
radii   *= GRIDSPC
MAT      = pss.mat_assignment(mats,xcr,ycr)
DMY      = np.zeros_like(xcoords)


A,B = pss.part_distance(xcr,ycr,radii,MAT,False)
print "The Contacts Measure, A = {}".format(A)
print "Avg Contacts Between the Same Materials, B = {}".format(B)
print 'Total contacts between same materials = {}, Total particles = {}'.format(B*J,J)
ALL = np.column_stack((MAT,xcr,ycr,radii))

pss.populate_materials(I_shape,XINT,YINT,MAT,J,TRACERS=True,ON=J_shape)      # Now populate the materials meshes (NB these are different to the 'mesh' and are
pss.save_spherical_parts(xcr,ycr,radii,MAT,A)
print 'save to meso_A-{:3.4f}.iSALE'.format(A)
pss.save_general_mesh(tracers=True)
A2, contact_matrix = pss.discrete_contacts_number(I_shape,XINT,YINT,J,J_shape)
print '\n'
print "A and A2 are:", A, A2
print '\n'


timestr = time.strftime('%d-%m-%Y_%H-%M-%S')
#np.savetxt('{}cppr_{}vfrlim_A{:1.3f}_{}.iSALE'.format(cppr,vfraclimit,A,timestr),ALL)
placed_part_area = np.array(placed_part_area)
print "total particles placed: {}".format(J)
vol_frac_calc = np.sum(placed_part_area)/(pss.meshx*pss.meshy)

if abs(vol_frac_calc - pss.vol_frac) <= 0.02:
#pss.place_shape(pss.mesh_Shps[0,:,:],0,ly,1,UC,LX=lx,LY=ly)
#pss.place_shape(pss.mesh_Shps[0,:,:],lx,ly,1,UC,LX=lx,LY=ly)

plt.figure()
plt.imshow(UC[0, :, :], interpolation='nearest', cmap='binary')
plt.imshow(UC[1, :, :], interpolation='nearest', cmap='binary', alpha=.5)
plt.imshow(UC[2, :, :], interpolation='nearest', cmap='binary', alpha=.5)
plt.imshow(UC[3, :, :], interpolation='nearest', cmap='binary', alpha=.5)

Ms, xcoords, ycoords, radii = pss.copypasteUC(UC, UCX, UCY, RAD, MATS)

Ms = pss.mat_assignment(mats, xcoords, ycoords, radii)
#plt.figure()
#plt.imshow(pss.materials[0,:,:],interpolation='nearest',cmap='binary')
#plt.imshow(pss.materials[1,:,:],interpolation='nearest',cmap='binary',alpha=.5)
#plt.imshow(pss.materials[2,:,:],interpolation='nearest',cmap='binary',alpha=.5)
#plt.imshow(pss.materials[3,:,:],interpolation='nearest',cmap='binary',alpha=.5)
#plt.show()

S = float(np.sum(UC) -
          4 * 3)  #There are 4 particles and 3 cells overlap per particle
print "Approximate Volume Fraction = {:3.1f}".format(S / float(lx * ly))

A, B = pss.part_distance(xcoords, ycoords, radii, Ms, plot=True)
xcoords *= GRIDSPC
ycoords *= GRIDSPC
radii *= GRIDSPC
pss.save_spherical_parts(xcoords, ycoords, radii, Ms, A)
#pss.view_mesoiSALE('meso_A-0.8000.iSALE')
#pss.save_general_mesh(mixed=False)
Exemple #4
0
w *= sc
h *= sc
xc *= sc * GRIDSPC
yc *= sc * GRIDSPC
rc *= sc * GRIDSPC

# Calculate number of occurences
No = X_cells * Y_cells / (w * h)
Nx = int(X_cells / w)
Ny = int(Y_cells / h)
w *= GRIDSPC
h *= GRIDSPC

X = []
Y = []
for i in range(Nx):
    for j in range(Ny):
        X.append(xc + i * w)
        Y.append(yc + j * h)

X = np.array(X)
Y = np.array(Y)
N = np.size(X)
radii = np.full((N), r)

MAT = pss.mat_assignment(mats, X, Y, radii)
A, B = pss.part_distance(X, Y, radii, MAT, plot=True)

pss.save_spherical_parts(X, Y, radii, MAT, A)
pss.view_mesoiSALE(filepath='meso_A-{:3.4f}.iSALE'.format(A))
Exemple #5
0
xc*= sc*GRIDSPC
yc*= sc*GRIDSPC
rc*= sc*GRIDSPC

# Calculate number of occurences
No = X_cells*Y_cells/(w*h)
Nx = int(X_cells/w)
Ny = int(Y_cells/h)
w *= GRIDSPC
h *= GRIDSPC

X = []
Y = []
for i in range(Nx):
	for j in range(Ny):
		X.append(xc+i*w)
		Y.append(yc+j*h)

X       = np.array(X)
Y       = np.array(Y)
N       = np.size(X)
radii   = np.full((N),r)

MAT = pss.mat_assignment(mats,X,Y,radii)
A,B = pss.part_distance(X,Y,radii,MAT,plot=True)

pss.save_spherical_parts(X,Y,radii,MAT,A)
pss.view_mesoiSALE(filepath='meso_A-{:3.4f}.iSALE'.format(A))


zcr *= GRIDSPC
radii *= GRIDSPC
MAT = pss.mat_assignment(mats, xcr, ycr)
DMY = np.zeros_like(xcoords)

A, B = pss.part_distance(xcr, ycr, radii, MAT, False)
print "The Contacts Measure, A = {}".format(A)
print "Avg Contacts Between the Same Materials, B = {}".format(B)
print 'Total contacts between same materials = {}, Total particles = {}'.format(
    B * J, J)
ALL = np.column_stack((MAT, xcr, ycr, radii))

pss.populate_materials(
    I_shape, XINT, YINT, MAT, J, TRACERS=True, ON=J_shape
)  # Now populate the materials meshes (NB these are different to the 'mesh' and are
pss.save_spherical_parts(xcr, ycr, radii, MAT, A)
print 'save to meso_A-{:3.4f}.iSALE'.format(A)
pss.save_general_mesh(tracers=True)
A2, contact_matrix = pss.discrete_contacts_number(I_shape, XINT, YINT, J,
                                                  J_shape)
print '\n'
print "A and A2 are:", A, A2
print '\n'

timestr = time.strftime('%d-%m-%Y_%H-%M-%S')
#np.savetxt('{}cppr_{}vfrlim_A{:1.3f}_{}.iSALE'.format(cppr,vfraclimit,A,timestr),ALL)
placed_part_area = np.array(placed_part_area)
print "total particles placed: {}".format(J)
vol_frac_calc = np.sum(placed_part_area) / (pss.meshx * pss.meshy)

if abs(vol_frac_calc - pss.vol_frac) <= 0.02:
Exemple #7
0
radii *= GRIDSPC
xc *= GRIDSPC
yc *= GRIDSPC

plt.figure()
plt.imshow(pss.materials[0, :, :], interpolation='nearest', cmap='binary')
plt.imshow(pss.materials[1, :, :],
           interpolation='nearest',
           cmap='binary',
           alpha=.5)
plt.imshow(pss.materials[2, :, :],
           interpolation='nearest',
           cmap='binary',
           alpha=.5)
plt.imshow(pss.materials[3, :, :],
           interpolation='nearest',
           cmap='binary',
           alpha=.5)
plt.imshow(pss.materials[4, :, :],
           interpolation='nearest',
           cmap='binary',
           alpha=.5)
plt.show()

A, B = pss.part_distance(xc, yc, radii, mats, True)
pss.save_spherical_parts(xc, yc, radii, mats, A)
#S = float(np.sum(UC)-4*3)#There are 4 particles and 3 cells overlap per particle
#print "Approximate Volume Fraction = {:3.1f}".format(S/float(lx*ly))

pss.save_general_mesh(mixed=False)
Exemple #8
0
            ind_i[k] = ind_i[0] - di
            ind_i = np.roll(ind_i,1)
    j   += dj

mats = np.array(mats)
radii = np.array(radii)
xc = np.array(xc)
yc = np.array(yc)

radii *= GRIDSPC
xc    *= GRIDSPC
yc    *= GRIDSPC


plt.figure()
plt.imshow(pss.materials[0,:,:],interpolation='nearest',cmap='binary')
plt.imshow(pss.materials[1,:,:],interpolation='nearest',cmap='binary',alpha=.5)
plt.imshow(pss.materials[2,:,:],interpolation='nearest',cmap='binary',alpha=.5)
plt.imshow(pss.materials[3,:,:],interpolation='nearest',cmap='binary',alpha=.5)
plt.imshow(pss.materials[4,:,:],interpolation='nearest',cmap='binary',alpha=.5)
plt.show()

A,B = pss.part_distance(xc,yc,radii,mats,True)
pss.save_spherical_parts(xc,yc,radii,mats,A)
#S = float(np.sum(UC)-4*3)#There are 4 particles and 3 cells overlap per particle
#print "Approximate Volume Fraction = {:3.1f}".format(S/float(lx*ly))

pss.save_general_mesh(mixed=False)