Exemple #1
0
 def __init__(self, *args, **kwargs):
     name = kwargs.pop('name', None)
     if name is None:
         self.name = 'BooleanRuleMatcher' + '_' + get_ts()
     else:
         self.name = name
     self.rules = OrderedDict()
     self.rule_source = OrderedDict()
     self.rule_conjunct_list = OrderedDict()
     self.rule_cnt = 0
Exemple #2
0
 def __init__(self, *args, **kwargs):
     super(SVMMatcher, self).__init__()
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'SVM' + '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     # Set the classifier to the scikit-learn classifier.
     self.clf = SVC(*args, **kwargs)
 def __init__(self, *args, **kwargs):
     super(SVMMatcher, self).__init__()
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'SVM'+ '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     # Set the classifier to the scikit-learn classifier.
     self.clf = SVC(*args, **kwargs)
 def __init__(self, *args, **kwargs):
     name = kwargs.pop('name', None)
     if name is None:
         self.name = 'BooleanRuleMatcher' + '_' + get_ts()
     else:
         self.name = name
     self.rules = OrderedDict()
     self.rule_source = OrderedDict()
     self.rule_conjunct_list = OrderedDict()
     self.rule_cnt = 0
     feature_table = kwargs.pop('feature_table', None)
     self.feature_table = feature_table
     self.rule_ft = OrderedDict()
Exemple #5
0
 def __init__(self, *args, **kwargs):
     super(LinRegMatcher, self).__init__()
      # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name is not given, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'LinearRegression' + '_' + get_ts()
     else:
         # set the name for the matcher.
         self.name = name
     # Wrap the class implementing linear regression classifer.
     self.clf = LinRegClassifierSKLearn(*args, **kwargs)
 def __init__(self, *args, **kwargs):
     super(LinRegMatcher, self).__init__()
      # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name is not given, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'LinearRegression' + '_' + get_ts()
     else:
         # set the name for the matcher.
         self.name = name
     # Wrap the class implementing linear regression classifer.
     self.clf = LinRegClassifierSKLearn(*args, **kwargs)
 def __init__(self, *args, **kwargs):
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'LogisticRegression'+ '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     super(LogRegMatcher, self).__init__()
     # Set the classifier to the scikit-learn classifier.
     self.clf = LogisticRegression(*args, **kwargs)
     self.clf.classes_ = [0, 1]
 def __init__(self, *args, **kwargs):
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'LogisticRegression' + '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     super(LogRegMatcher, self).__init__()
     # Set the classifier to the scikit-learn classifier.
     self.clf = LogisticRegression(*args, **kwargs)
     self.clf.classes_ = [0, 1]
 def __init__(self, *args, **kwargs):
     logger.warning(
         "WARNING THIS MATCHER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK.")
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'NaiveBayes'+ '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     super(DaskNBMatcher, self).__init__()
     # Set the classifier to the scikit-learn classifier.
     self.clf = GaussianNB(*args, **kwargs)
 def __init__(self, *args, **kwargs):
     logger.warning(
         "WARNING THIS MATCHER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK."
     )
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'NaiveBayes' + '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     super(DaskNBMatcher, self).__init__()
     # Set the classifier to the scikit-learn classifier.
     self.clf = GaussianNB(*args, **kwargs)
Exemple #11
0
 def __init__(self, *args, **kwargs):
     super(XGBoostMatcher, self).__init__()
     # If the name is given, then pop it
     name = kwargs.pop('name', None)
     if name is None:
         # If the name of the matcher is give, then create one.
         # Currently, we use a constant string + a random number.
         self.name = 'xgboost' + '_' + get_ts()
     else:
         # Set the name of the matcher, with the given name.
         self.name = name
     # Set the classifier to the scikit-learn classifier.
     try:
         from xgboost.sklearn import XGBClassifier
     except ImportError:
         raise ImportError(
             'Check if xgboost library is installed. You can install xgboost '
             'by following the instructions at http://xgboost.readthedocs.io/en/latest/build.html'
         )
     self.clf = XGBClassifier(*args, **kwargs)
    def __init__(self, *args, **kwargs):
        logger.warning(
            "WARNING THIS MATCHER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK.")

        super(DaskXGBoostMatcher, self).__init__()
        # If the name is given, then pop it
        name = kwargs.pop('name', None)
        if name is None:
            # If the name of the matcher is give, then create one.
            # Currently, we use a constant string + a random number.
            self.name = 'xgboost' + '_' + get_ts()
        else:
            # Set the name of the matcher, with the given name.
            self.name = name
        # Set the classifier to the scikit-learn classifier.
        try:
            from xgboost.sklearn import XGBClassifier
        except ImportError:
            raise ImportError(
                'Check if xgboost library is installed. You can install xgboost '
                'by following the instructions at http://xgboost.readthedocs.io/en/latest/build.html')
        self.clf = XGBClassifier(*args, **kwargs)