def test_multivector2vector_independent(): def f(x, y): return x**2 + 2 * y**3 + 1 def dfdx(x, y): return 2 * x def dfdy(x, y): return 6 * y**2 x = np.array([2, 3, 4]) y = np.array([1, 2, 3]) ref_x = [4, 6, 8] ref_y = [6, 24, 54] npt.assert_array_almost_equal(fd(f, False)(x, y), ref_x, 5) npt.assert_array_almost_equal(fd(f, False, 1)(x, y), ref_y, 4) npt.assert_array_almost_equal_nulp(cs(f, False)(x, y), ref_x) npt.assert_array_almost_equal_nulp(cs(f, False, 1)(x, y), ref_y) npt.assert_array_equal(autograd(f, False)(x, y), ref_x) npt.assert_array_equal(autograd(f, False, 1)(x, y), ref_y) pf = primitive(f) defvjp(pf, lambda ans, x, y: lambda g: g * dfdx(x, y), lambda ans, x, y: lambda g: g * dfdy(x, y)) npt.assert_array_equal(autograd(pf, False)(x, y), ref_x) npt.assert_array_equal(autograd(pf, False, 1)(x, y), ref_y)
def test_scalar2scalar(): def f(x): return x**2 + 1 x = np.array([3]) npt.assert_equal(cs(f)(x), 6) npt.assert_almost_equal(fd(f)(x), 6, 5) npt.assert_equal(autograd(f)(x), 6) pf = primitive(f) defvjp(pf, lambda ans, x: lambda g: g * 2 * x) npt.assert_array_equal(autograd(pf, False)(x), 6)
def test_vector2vector_dependent(): def f(x): return x**2 + x[::-1] def df(x): return np.diag(2 * x) + np.diag(np.ones(3))[::-1] x = np.array([2., 3, 4]) ref = [[4., 0., 1.], [0., 7., 0.], [1., 0., 8.]] npt.assert_array_almost_equal(fd(f, True)(x), ref, 5) npt.assert_array_almost_equal_nulp(cs(f, True)(x), ref) npt.assert_array_equal(autograd(f, True)(x), ref) pf = primitive(f) defvjp(pf, lambda ans, x: lambda g: np.dot(g, df(x))) npt.assert_array_equal(autograd(pf, True)(x), ref)
def test_vector2vector_independent(): def f(x): return x**2 + 1 def df(x): return 2 * x x = np.array([2, 3, 4]) ref = [4, 6, 8] npt.assert_array_almost_equal(fd(f, False)(x), ref, 5) npt.assert_array_equal(cs(f, False)(x), ref) npt.assert_array_equal(autograd(f, False)(x), ref) pf = primitive(f) defvjp(pf, lambda ans, x: lambda g: g * df(x)) npt.assert_array_equal(autograd(pf, False)(x), ref)
def test_read_iea_windturbine(): wt_id, hubheight, diameter, ct, power, dct, dpower = read_iea37_windturbine( iea37_path + 'iea37-335mw.yaml') assert wt_id == "3.35MW" assert hubheight == 110 assert diameter == 130 u = np.arange(30) p_r = 3350000 npt.assert_array_almost_equal([0, 1 / 5.8**3 * p_r, p_r, p_r, 0], power([4, 5, 9.8, 25, 25.1])) ct_ = 4 * 1 / 3 * (1 - 1 / 3) npt.assert_array_almost_equal([0, ct_, ct_, 0], ct([3.9, 4, 25, 25.1])) npt.assert_almost_equal(dpower(7), cs(power)(7)) npt.assert_equal(dct(7), 0) if 0: import matplotlib.pyplot as plt plt.plot(u, power(u) / 1e6) plt.plot(u, ct(u)) plt.show()
def test_scalar2multi_scalar(): def fxy(x): return x**2 + 1, 2 * x + 1 def f(x): fx, fy = fxy(x) return fx + fy x = 3. ref = 8 npt.assert_equal(cs(f)(x), ref) npt.assert_almost_equal(fd(f)(x), ref, 5) npt.assert_equal(autograd(f)(x), ref) pf = primitive(f) defvjp(pf, lambda ans, x: lambda g: g * (2 * x + 2)) npt.assert_array_equal(autograd(pf, False)(x), ref) pf = primitive(fxy) defvjp(pf, lambda ans, x: lambda g: (g[0] * 2 * x, g[1] * 2)) npt.assert_array_equal(autograd(f, False)(x), ref)
def test_gradients(): wt = IEA37_WindTurbines() wt.enable_autograd() ws_lst = np.arange(3, 25, .1) ws_pts = np.array([3., 6., 9., 12.]) dpdu_lst = autograd(wt.power)(ws_pts) if 0: plt.plot(ws_lst, wt.power(ws_lst)) for dpdu, ws in zip(dpdu_lst, ws_pts): plot_gradients(wt.power(ws), dpdu, ws, "", 1) plt.show() dpdu_ref = np.where((ws_pts > 4) & (ws_pts <= 9.8), 3 * 3350000 * (ws_pts - 4)**2 / (9.8 - 4)**3, 0) npt.assert_array_almost_equal(dpdu_lst, dpdu_ref) fd_dpdu_lst = fd(wt.power)(ws_pts) npt.assert_array_almost_equal(fd_dpdu_lst, dpdu_ref, 0) cs_dpdu_lst = cs(wt.power)(ws_pts) npt.assert_array_almost_equal(cs_dpdu_lst, dpdu_ref)
def test_vector2multi_vector(): def fxy(x): return x**2 + 1, 2 * x + 1 def f0(x): return fxy(x)[0] def fsum(x): fx, fy = fxy(x) return fx + fy x = np.array([1., 2, 3]) ref0 = [2, 4, 6] refsum = [4, 6, 8] npt.assert_equal(cs(f0)(x), ref0) npt.assert_almost_equal(fd(f0)(x), ref0, 5) npt.assert_equal(autograd(f0)(x), ref0) pf0 = primitive(f0) defvjp(pf0, lambda ans, x: lambda g: g * (2 * x)) npt.assert_array_equal(autograd(pf0, False)(x), ref0) npt.assert_equal(cs(fsum)(x), refsum) npt.assert_almost_equal(fd(fsum)(x), refsum, 5) npt.assert_equal(autograd(fsum)(x), refsum) pfsum = primitive(fsum) defvjp(pfsum, lambda ans, x: lambda g: g * (2 * x + 2)) npt.assert_array_equal(autograd(pfsum, False)(x), refsum) pfxy = primitive(fxy) def dfxy(x): return 2 * x, np.full(x.shape, 2) def gsum(x): fx, fy = pfxy(x) return fx + fy def g0(x): return pfxy(x)[0] pgsum = primitive(gsum) pg0 = primitive(g0) defvjp(pgsum, lambda ans, x: lambda g: g * np.sum(dfxy(x), 0)) defvjp(pg0, lambda ans, x: lambda g: g * dfxy(x)[0]) npt.assert_array_equal(autograd(pgsum, False)(x), refsum) npt.assert_array_equal(autograd(pg0, False)(x), ref0) defvjp(pfxy, lambda ans, x: lambda g: dfxy(x)[0]) def h0(x): return pfxy(x)[0] npt.assert_array_equal(autograd(h0, False)(x), ref0) defvjp(pfxy, lambda ans, x: lambda g: np.sum(g * np.asarray(dfxy(x)), 0)) def hsum(x): fx, fy = pfxy(x) return fx + fy npt.assert_array_equal(autograd(hsum, False)(x), refsum)