Exemple #1
0
def test_from_WindTurbines():
    vestas_v80_wtg = WindTurbines.from_WAsP_wtg(
        os.path.join(wtg_path, 'Vestas-V80.wtg'))
    NEG_2750_wtg = WindTurbines.from_WAsP_wtg(
        os.path.join(wtg_path, 'NEG-Micon-2750.wtg'))
    _test_wts_wtg(
        WindTurbines.from_WindTurbines([vestas_v80_wtg, NEG_2750_wtg]))
Exemple #2
0
def test_twotype_windturbines():
    v80 = V80()

    def power(ws, types):
        power = v80.power(ws)
        # add 10% type 1 turbines
        power[types == 1] *= 1.1
        return power

    wts = WindTurbines(names=['V80', 'V88'],
                       diameters=[80, 88],
                       hub_heights=[70, 77],
                       ct_funcs=[v80.ct_funcs[0], v80.ct_funcs[0]],
                       power_funcs=[v80.power, lambda ws: v80.power(ws) * 1.1],
                       power_unit='w')

    import matplotlib.pyplot as plt
    types0 = [0] * 9
    types1 = [0, 0, 0, 1, 1, 1, 0, 0, 0]
    types2 = [1] * 9
    wts.plot(wt9_x, wt9_y, types1)
    wfm = NOJ(Hornsrev1Site(), wts)
    npt.assert_almost_equal(
        wfm(wt9_x, wt9_y, type=types0).aep(), 81.2066072392765)
    npt.assert_almost_equal(
        wfm(wt9_x, wt9_y, type=types1).aep(), 83.72420504573488)
    npt.assert_almost_equal(
        wfm(wt9_x, wt9_y, type=types2).aep(), 88.87227386796884)
    if 0:
        plt.show()
def test_deprecated_from_WindTurbines():
    v80 = V80Deprecated()

    v88 = WindTurbine('V88',
                      88,
                      77,
                      powerCtFunction=PowerCtTabular(
                          hornsrev1.power_curve[:, 0],
                          hornsrev1.power_curve[:, 1] * 1.1, 'w',
                          hornsrev1.ct_curve[:, 1]))

    with pytest.raises(
            AssertionError,
            match='from_WindTurbines no longer supports DeprecatedWindTurbines'
    ):
        WindTurbines.from_WindTurbines([v80, v88])
Exemple #4
0
def test_from_WAsP_wtg():
    import os
    from py_wake.examples.data import wtg_path
    from py_wake.wind_turbines import WindTurbines
    vestas_v80_wtg = os.path.join(wtg_path, 'Vestas-V80.wtg')
    NEG_2750_wtg = os.path.join(wtg_path, 'NEG-Micon-2750.wtg')
    wts_wtg = WindTurbines.from_WAsP_wtg([vestas_v80_wtg, NEG_2750_wtg])

    assert (wts_wtg.name(types=0) == 'Vestas V80 (2MW, Offshore)')
    assert (wts_wtg.diameter(types=0) == 80)
    assert (wts_wtg.hub_height(types=0) == 67)
    npt.assert_array_equal(
        wts_wtg.power(np.array([0, 3, 5, 9, 18, 26]), type_i=0),
        np.array([0, 0, 154000, 996000, 2000000, 0]))
    npt.assert_array_equal(
        wts_wtg.ct(np.array([1, 4, 7, 9, 17, 27]), type_i=0),
        np.array([0, 0.818, 0.805, 0.807, 0.167, 0]))

    assert (wts_wtg.name(types=1) == 'NEG-Micon 2750/92 (2750 kW)')
    assert (wts_wtg.diameter(types=1) == 92)
    assert (wts_wtg.hub_height(types=1) == 70)
    npt.assert_array_equal(
        wts_wtg.power(np.array([0, 3, 5, 9, 18, 26]), type_i=1),
        np.array([0, 0, 185000, 1326000, 2748000, 0]))
    npt.assert_array_equal(
        wts_wtg.ct(np.array([1, 4, 7, 9, 17, 27]), type_i=1),
        np.array([0, 0.871, 0.841, 0.797, 0.175, 0]))
Exemple #5
0
def test_Mirror_NOJ():
    # Compare points in flow map with ws of WT at same position
    site = UniformSite([1], ti=0.1)
    V80_D0 = V80()
    V80_D0._diameters = [0]
    wt = WindTurbines.from_WindTurbines([V80(), V80_D0])
    wfm = NOJ(site, wt, k=.5, groundModel=Mirror())
    sim_res = wfm([0], [0], h=[50], wd=0)
    fm_ref = sim_res.flow_map(YZGrid(x=0, y=np.arange(-70, 0, 20), z=10))
    ref = fm_ref.WS_eff_xylk[:, 0, 0, 0].values

    res = np.array([
        wfm([0, 0], [0, y], [50, 10], type=[0, 1],
            wd=0).WS_eff.sel(wt=1).item() for y in fm_ref.X[0]
    ])

    if 0:
        fm_res = sim_res.flow_map(YZGrid(x=0, y=np.arange(-100, 10, 1)))
        fm_res.plot_wake_map()
        plt.plot(fm_ref.X[0], fm_ref.Y[0], '.')
        plt.plot(fm_ref.X[0], ref * 10, label='ref, WS*10')
        plt.plot(fm_ref.X[0], res * 10, label='Res, WS*10')

        plt.legend()
        plt.show()
    plt.close()
    npt.assert_array_equal(res, ref)
Exemple #6
0
def test_aep_mixed_type():
    site = UniformSite([1], ti=0)
    wt = WindTurbines.from_WindTurbines(
        [IEA37_WindTurbines(), IEA37_WindTurbines()])

    wfm = NOJ(site, wt)

    sim_res = wfm([0, 500], [0, 0], type=[0, 1], wd=270)

    npt.assert_almost_equal(
        sim_res.aep(with_wake_loss=False).sum(),
        2 * wfm([0], [0], wd=270).aep(with_wake_loss=False).sum())
def get_wt(power_ct_func):
    if isinstance(power_ct_func, list):
        N = len(power_ct_func)
        return WindTurbines(names=['Test'] * N,
                            diameters=[80] * N,
                            hub_heights=[70] * N,
                            power_ct_funcs=power_ct_func)
    else:
        return WindTurbine(name='Test',
                           diameter=80,
                           hub_height=70,
                           powerCtFunction=power_ct_func)
Exemple #8
0
def test_DeprecatedWindTurbines():
    v80 = V80Deprecated()

    for wts in [v80,
                WindTurbines(names=['V80'], diameters=[80], hub_heights=[70],
                             ct_funcs=v80._ct_funcs, power_funcs=v80._power_funcs, power_unit='w')]:

        types0 = [0] * 9
        for wfm in get_wfms(wts):
            # wfm = NOJ(Hornsrev1Site(), wts)
            npt.assert_array_equal(wts.types(), [0])
            npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types0), 81.2066072392765)
Exemple #9
0
def test_WindTurbines():
    u_p, p = np.asarray(hornsrev1.power_curve).T.copy()

    u_ct, ct = hornsrev1.ct_curve.T
    npt.assert_array_equal(u_p, u_ct)
    curve = PowerCtTabular(ws=u_p, power=p, power_unit='w', ct=ct)

    for wts in [WindTurbine(name='V80', diameter=80, hub_height=70, powerCtFunction=curve),
                WindTurbines(names=['V80'], diameters=[80], hub_heights=[70], powerCtFunctions=[curve])]:
        types0 = [0] * 9
        for wfm in get_wfms(wts):
            npt.assert_array_equal(wts.types(), [0])
            npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types0), 81.2066072392765)
Exemple #10
0
def test_plot_yz2_types():
    wt = WindTurbines.from_WindTurbines([IEA37_WindTurbines(), V80()])
    yaw_lst = np.array([-30, 0, 30])
    for wd in 0, 45, 90:
        plt.figure()
        wt.plot_yz(yaw_lst * 20, types=[0, 1, 0], wd=wd, yaw=yaw_lst)
        for i, yaw in enumerate(yaw_lst):
            plt.plot([], 'gray', label="WT %d yaw: %d deg" % (i, yaw))
        plt.legend()
        plt.title("WD: %s" % wd)
    if 0:
        plt.show()
    plt.close()
Exemple #11
0
def test_twotype_windturbines():
    v80 = V80()

    v88 = WindTurbine('V88', 88, 77,
                      powerCtFunction=PowerCtTabular(
                          hornsrev1.power_curve[:, 0], hornsrev1.power_curve[:, 1] * 1.1, 'w',
                          hornsrev1.ct_curve[:, 1]))

    wts = WindTurbines.from_WindTurbines([v80, v88])

    types0 = [0] * 9
    types1 = [0, 0, 0, 1, 1, 1, 0, 0, 0]
    types2 = [1] * 9

    for wfm in get_wfms(wts):
        npt.assert_array_equal(wts.types(), [0, 1])
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types0), 81.2066072392765)
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types1), 83.72420504573488)
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types2), 88.87227386796884)
Exemple #12
0
def test_neighbour_farm_speed():
    # import and setup site and windTurbines
    site = IEA37Site(16)

    # setup current, neighbour and all positions
    wt_x, wt_y = site.initial_position.T
    neighbour_x, neighbour_y = wt_x - 4000, wt_y
    all_x, all_y = np.r_[wt_x, neighbour_x], np.r_[wt_y, neighbour_y]

    windTurbines = WindTurbines.from_WindTurbines([IEA37_WindTurbines(), IEA37_WindTurbines()])
    windTurbines._names = ["Current wind farm", "Neighbour wind farm"]
    types = [0] * len(wt_x) + [1] * len(neighbour_x)

    wf_model = PropagateDownwind(site, windTurbines,
                                 wake_deficitModel=BastankhahGaussianDeficit(use_effective_ws=True),
                                 superpositionModel=LinearSum())
    # Consider wd=270 +/- 30 deg only
    wd_lst = np.arange(240, 301)

    sim_res, t = timeit(wf_model, verbose=False)(all_x, all_y, type=types, ws=9.8, wd=wd_lst)
    if 1:
        ext = 100
        flow_box = wf_model(neighbour_x, neighbour_y, wd=wd_lst).flow_box(
            x=np.linspace(min(wt_x) - ext, max(wt_x) + ext, 53),
            y=np.linspace(min(wt_y) - ext, max(wt_y) + ext, 51),
            h=[100, 110, 120])

        wake_site = XRSite.from_flow_box(flow_box)
        wake_site.save('tmp.nc')
    else:
        wake_site = XRSite.load('tmp.nc')

    wf_model_wake_site = PropagateDownwind(wake_site, windTurbines,
                                           wake_deficitModel=BastankhahGaussianDeficit(use_effective_ws=True),
                                           superpositionModel=LinearSum())

    sim_res_wake_site, _ = timeit(wf_model_wake_site, verbose=False)(wt_x, wt_y, ws=9.8, wd=wd_lst)
    npt.assert_allclose(sim_res.aep().sel(wt=np.arange(len(wt_x))).sum(), sim_res_wake_site.aep().sum(), rtol=0.0005)
    npt.assert_array_almost_equal(sim_res.aep().sel(wt=np.arange(len(wt_x))), sim_res_wake_site.aep(), 2)
def test_DeprecatedWindTurbines():

    for wts in [
            V80Deprecated(),
            WindTurbines(
                names=['V80'],
                diameters=[80],
                hub_heights=[70],
                ct_funcs=[
                    lambda ws: np.interp(ws, hornsrev1.ct_curve[:, 0],
                                         hornsrev1.ct_curve[:, 1])
                ],
                power_funcs=[
                    lambda ws: np.interp(ws, hornsrev1.power_curve[:, 0],
                                         hornsrev1.power_curve[:, 1])
                ],
                power_unit='w')
    ]:

        types0 = [0] * 9
        wfm = NOJ(Hornsrev1Site(), wts)
        npt.assert_array_equal(wts.types(), [0])
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types0),
                                81.2066072392765)
Exemple #14
0
    aep_ls = sim_res_ls.aep()
    aep_ms = sim_res_ms.aep()
    print(aep_ss, aep_ls, aep_ms)
    # plot wake map
    for sim_res, aep in [['sim_res_ss', 'aep_ss'], ['sim_res_ls', 'aep_ls'], ['sim_res_ms', 'aep_ms']]:
        flow_map = locals()[sim_res].flow_map(wd=30, ws=9.8)
        flow_map.plot_wake_map()
        flow_map.plot_windturbines()
        plt.title('%s AEP: %.2f GWh' % (aep, locals()[aep]))
        plt.show()

    from py_wake.site import WaspGridSite
    from py_wake.wind_turbines import WindTurbines
    import pandas as pd

    layout = pd.read_table('/Users/luqi/开发/PyWake2_LQ/py_wake/examples/CGN_RD/site/cgn_layout.txt')
    site_cgn = WaspGridSite.from_wasp_grd('/Users/luqi/开发/PyWake2_LQ/py_wake/examples/CGN_RD/grd', speedup_using_pickle=False)
    wtg_g4 = WindTurbines.from_WAsP_wtg('/Users/luqi/开发/PyWake2_LQ/py_wake/examples/CGN_RD/power/SWT-4.0-130-CGN 1.223.wtg')
    type_i, h_i, D_i = wtg_g4.get_defaults(len(layout['X']))
    lw = site_cgn.local_wind(np.array(layout['X']), np.array(layout['Y']), h_i)  # localwind
    cgn_model_ss = NOJ(site_cgn, wtg_g4, k=0.05, superpositionModel=SquaredSum())
    cgn_sim_res_ss = cgn_model_ss(np.array(layout['X']), np.array(layout['Y']))
    cgn_aep_grs = cgn_sim_res_ss.aep(with_wake_loss=False)
    cgn_aep_net = cgn_sim_res_ss.aep()
    print(cgn_aep_grs, cgn_aep_net, '%.2f ' % ((1-cgn_aep_net/cgn_aep_grs)*100) + '%')
    cgn_flow_map = cgn_sim_res_ss.flow_map(wd=30, ws=10)
    cgn_flow_map.plot_wake_map()
    cgn_flow_map.plot_windturbines()
    plt.title('%s AEP: %.2f GWh' % ('CGN NET', cgn_aep_net))
    plt.show()
import multiprocessing
from py_wake.examples.data.hornsrev1 import Hornsrev1Site, wt_x, wt_y
from py_wake import IEA37SimpleBastankhahGaussian
from py_wake.tests.check_speed import timeit
import numpy as np
from py_wake.tests import npt
from py_wake.wind_turbines import WindTurbines
from py_wake.examples.data import wtg_path


wt = WindTurbines.from_WAsP_wtg(wtg_path + "Vestas-V80.wtg")
site = Hornsrev1Site()
wf_model = IEA37SimpleBastankhahGaussian(site, wt)
wd_lst = np.arange(0, 360, 10)


def aep_wd(args):
    x, y, wd = args
    return wf_model(x, y, wd=wd, ws=None).aep().sum()


def aep_all_multiprocessing(pool, x, y):
    return np.sum(pool.map(aep_wd, [(x, y, i) for i in wd_lst]))


def aep_wfm_xy(args):
    wfm, x, y = args
    return wfm(x, y, wd=wd_lst).aep().sum()


def aep_xy(args):
Exemple #16
0
def get_wfm(grad=True):
    wt = WindTurbines.from_WAsP_wtg(wtg_path + "Vestas-V80.wtg", )
    site = Hornsrev1Site()
    return IEA37SimpleBastankhahGaussian(site, wt)
def main(obj=False, max_con_on=True):
    if __name__ == '__main__':
        start = time.time()
        try:
            import matplotlib.pyplot as plt
            plt.gcf()
            plot = True
        except RuntimeError:
            plot = False

        # ------ DEFINE WIND TURBINE TYPES, LOCATIONS & STORE METADATA -------
        windTurbines = WindTurbines(
            names=['Ghost_T1', 'T2'],
            diameters=[40, 84],
            hub_heights=[70, hornsrev1.HornsrevV80().hub_height()],
            ct_funcs=[dummy_thrust(ct_rated=0),
                      hornsrev1.HornsrevV80().ct],
            power_funcs=[
                cube_power(power_rated=0),
                cube_power(power_rated=3000)
            ],
            # hornsrev1.HornsrevV80()._power],
            power_unit='kW')
        Drotor_vector = windTurbines._diameters
        power_rated_vec = np.array(
            [pcurv(25) / 1000 for pcurv in windTurbines._power_funcs])
        hub_height_vector = windTurbines._hub_heights

        x, y = np.meshgrid(range(-840, 840, 420), range(-840, 840, 420))
        n_wt = len(x.flatten())
        # initial turbine positions and other independent variables
        ext_vars = {'x': x.flatten(), 'y': y.flatten(), 'obj': obj * 1}

        capconst = []
        if max_con_on:
            capconst = [
                CapacityConstraint(max_capacity=30.01,
                                   rated_power_array=power_rated_vec)
            ]

        # ---------------- DEFINE SITE & SELECT WAKE MODEL -------------------
    #        site = UniformWeibullSite(p_wd=[50, 50], a=[9, 9], k=[2.3, 2.3], ti=.1, alpha=0, h_ref=100)
        site = UniformWeibullSite(p_wd=[100], a=[9], k=[2.3], ti=.1)
        site.default_ws = [9]  # reduce the number of calculations
        site.default_wd = [0]  # reduce the number of calculations

        wake_model = NOJ(site, windTurbines)

        AEPCalc = AEPCalculator(wake_model)

        # ------------- OUTPUTS AEP PER TURBINE & FARM IRR -------------------
        def aep_func(x, y, type, obj, **kwargs
                     ):  # TODO fix type as input change to topfarm turbinetype
            out = AEPCalc.calculate_AEP(x_i=x, y_i=y,
                                        type_i=type.astype(int)).sum((1, 2))
            if obj:  # if objective is AEP; output the total Farm_AEP
                out = np.sum(out)
            return out * 10**6

        def irr_func(aep, type, **kwargs):
            idx = type.astype(int)
            return economic_evaluation(Drotor_vector[idx],
                                       power_rated_vec[idx],
                                       hub_height_vector[idx],
                                       aep).calculate_irr()

        # ----- WRAP AEP AND IRR INTO TOPFARM COMPONENTS AND THEN GROUP  -----
        aep_comp = CostModelComponent(input_keys=[
            topfarm.x_key, topfarm.y_key, topfarm.type_key, ('obj', obj)
        ],
                                      n_wt=n_wt,
                                      cost_function=aep_func,
                                      output_key="aep",
                                      output_unit="GWh",
                                      objective=obj,
                                      output_val=np.zeros(n_wt),
                                      income_model=True)
        comps = [aep_comp]  # AEP component is always in the group
        if not obj:  # if objective is IRR initiate/add irr_comp
            irr_comp = CostModelComponent(input_keys=[topfarm.type_key, 'aep'],
                                          n_wt=n_wt,
                                          cost_function=irr_func,
                                          output_key="irr",
                                          output_unit="%",
                                          objective=True)
            comps.append(irr_comp)

        group = TopFarmGroup(comps)

        # - INITIATE THE PROBLEM WITH ONLY TURBINE TYPE AS DESIGN VARIABLES -
        tf = TopFarmProblem(
            design_vars={
                topfarm.type_key: ([0] * n_wt, 0, len(windTurbines._names) - 1)
            },
            cost_comp=group,
            driver=EasyRandomSearchDriver(randomize_func=RandomizeAllUniform(
                [topfarm.type_key]),
                                          max_iter=1),
            # driver=EasySimpleGADriver(max_gen=2, random_state=1),
            constraints=capconst,
            # plot_comp=TurbineTypePlotComponent(windTurbines._names),
            plot_comp=NoPlot(),
            ext_vars=ext_vars)

        cost, state, rec = tf.optimize()
        # view_model(problem, outfile='ex5_n2.html', show_browser=False)
        end = time.time()
        print(end - start)
        # %%
        # ------------------- OPTIONAL VISUALIZATION OF WAKES ----------------
        post_visual, save = False, False
        if post_visual:
            #        import matplotlib.pyplot as plt
            for cou, (i, j, k, co, ae) in enumerate(
                    zip(rec['x'], rec['y'], rec['type'], rec['cost'],
                        rec['aep'])):
                AEPCalc.calculate_AEP(x_i=i, y_i=j, type_i=k)
                AEPCalc.plot_wake_map(wt_x=i,
                                      wt_y=j,
                                      wt_type=k,
                                      wd=site.default_wd[0],
                                      ws=site.default_ws[0],
                                      levels=np.arange(2.5, 12, .1))
                windTurbines.plot(i, j, types=k)
                title = f'IRR: {-np.round(co,2)} %, AEP :  {round(np.sum(ae))} GWh, '
                if "totalcapacity" in rec.keys():
                    title += f'Total Capacity: {rec["totalcapacity"][cou]} MW'
                plt.title(title)
                if save:
                    plt.savefig(
                        r'..\..\..\ima2\obj_AEP_{}_MaxConstraint_{}_{}.png'.
                        format(obj, max_con_on, cou))
                plt.show()
Exemple #18
0
from py_wake.site._site import UniformSite
from py_wake.tests import npt
from py_wake.flow_map import HorizontalGrid
from py_wake.wind_turbines import WindTurbines
from py_wake.wind_farm_models.engineering_models import All2AllIterative
from py_wake.deficit_models.noj import NOJDeficit
from py_wake.superposition_models import LinearSum, WeightedSum
from py_wake.turbulence_models.stf import STF2017TurbulenceModel
from py_wake.wind_turbines.power_ct_functions import PowerCtFunction

# Two turbines, 0: Nibe-A, 1:Ct=0
NibeA0 = WindTurbines(
    names=['Nibe-A'] * 2,
    diameters=[40] * 2,
    hub_heights=[50] * 2,
    # only define for ct
    powerCtFunctions=[
        PowerCtFunction(['ws'], lambda ws, run_only: ws * 0 + 8 / 9, 'w'),
        PowerCtFunction(['ws'], lambda ws, run_only: ws * 0, 'w')
    ])


def test_NOJ_Nibe_result():
    # Replicate result from: Jensen, Niels Otto. "A note on wind generator interaction." (1983).

    site = UniformSite([1], 0.1)
    x_i = [0, 0, 0]
    y_i = [0, -40, -100]
    h_i = [50, 50, 50]
    wfm = All2AllIterative(site,
                           NibeA0,
import pytest
import numpy as np
from py_wake import NOJ
from py_wake.site._site import UniformSite
from py_wake.superposition_models import LinearSum, SquaredSum, MaxSum
from py_wake.tests import npt
from py_wake.wind_turbines import WindTurbines

# Two turbines, 0: Nibe-A, 1:Ct=0
NibeA0 = WindTurbines(names=['Nibe-A'] * 2,
                      diameters=[40] * 2,
                      hub_heights=[50] * 2,
                      ct_funcs=[lambda _: 8 / 9, lambda _: 0],
                      power_funcs=[lambda _: 0] * 2,
                      power_unit='w')

d02 = 8.1 - 5.7
d12 = 8.1 - 4.90473373


@pytest.mark.parametrize('superpositionModel,res',
                         [(LinearSum(), 8.1 - (d02 + d12)),
                          (SquaredSum(), 8.1 - np.hypot(d02, d12)),
                          (MaxSum(), 8.1 - d12)])
def test_superposition_models(superpositionModel, res):
    site = UniformSite([1], 0.1)
    wake_model = NOJ(site, NibeA0, superpositionModel=superpositionModel)
    x_i = [0, 0, 0]
    y_i = [0, -40, -100]
    h_i = [50, 50, 50]
    WS_eff_ilk = wake_model.calc_wt_interaction(x_i, y_i, h_i, [0, 0, 1], 0.0,
Exemple #20
0
    types0 = [0] * 9
    types1 = [0, 0, 0, 1, 1, 1, 0, 0, 0]
    types2 = [1] * 9

    for wfm in get_wfms(wts):
        npt.assert_array_equal(wts.types(), [0, 1])
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types0), 81.2066072392765)
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types1), 83.72420504573488)
        npt.assert_almost_equal(wfm.aep(wt9_x, wt9_y, type=types2), 88.87227386796884)


@pytest.mark.parametrize('wts_wtg', [
    lambda: WindTurbine.from_WAsP_wtg([os.path.join(wtg_path, 'Vestas-V80.wtg'),
                                       os.path.join(wtg_path, 'NEG-Micon-2750.wtg')]),
    lambda:WindTurbines.from_WindTurbine_lst([WindTurbine.from_WAsP_wtg(os.path.join(wtg_path, 'Vestas-V80.wtg')),
                                              WindTurbine.from_WAsP_wtg(os.path.join(wtg_path, 'NEG-Micon-2750.wtg'))])])
def test_wasp_wtg(wts_wtg):
    wts_wtg = wts_wtg()
    assert(wts_wtg.name(type=0) == 'Vestas V80 (2MW, Offshore)')
    assert(wts_wtg.diameter(type=0) == 80)
    assert(wts_wtg.hub_height(type=0) == 67)
    npt.assert_array_equal(wts_wtg.power(np.array([0, 3, 3.99, 4, 5, 9, 18, 25, 25.01, 100]),
                                         type=0), np.array([0, 0, 0, 66600, 154000, 996000, 2e6, 2e6, 0, 0]))
    npt.assert_array_equal(wts_wtg.ct(np.array([1, 3.99, 4, 7, 9, 17, 25, 25.01, 100]), type=0),
                           np.array([0.052, 0.052, 0.818, 0.805, 0.807, 0.167, 0.052, 0.052, 0.052]))

    assert(wts_wtg.name(type=1) == 'NEG-Micon 2750/92 (2750 kW)')
    assert(wts_wtg.diameter(type=1) == 92)
    assert(wts_wtg.hub_height(type=1) == 70)
    npt.assert_array_equal(wts_wtg.power(np.array([0, 3, 3.99, 4, 5, 9, 18, 25, 25.01, 100]), type=1),
                           np.array([0, 0, 0, 55000, 185000, 1326000, 2748000, 2750000, 0, 0]))