Exemple #1
0
    def test_13_ReadAndWrite(self):

        ut_testsrc = os.getenv("TESTSRC")
        ut_testtmp = os.getenv("TESTTMP")

        l2n = pya.LayoutToNetlist()

        infile = os.path.join(ut_testsrc, "testdata", "algo",
                              "l2n_writer_au.txt")
        l2n.read(infile)

        tmp = os.path.join(ut_testtmp, "tmp.txt")
        l2n.write(tmp)

        with open(tmp, 'r') as file:
            tmp_text = file.read()
        with open(infile, 'r') as file:
            infile_text = file.read()
        self.assertEqual(tmp_text, infile_text)

        self.assertEqual(
            ",".join(l2n.layer_names()),
            "poly,poly_lbl,diff_cont,poly_cont,metal1,metal1_lbl,via1,metal2,metal2_lbl,psd,nsd"
        )
        self.assertEqual(l2n.layer_name(l2n.layer_by_name("metal1")), "metal1")
        self.assertEqual(
            l2n.layer_name(
                l2n.layer_by_index(l2n.layer_of(l2n.layer_by_name("metal1")))),
            "metal1")
Exemple #2
0
  def test_3_ReadAndWrite(self):

    ut_testsrc = os.getenv("TESTSRC")
    ut_testtmp = os.getenv("TESTTMP")

    lvs = pya.LayoutVsSchematic()

    infile = os.path.join(ut_testsrc, "testdata", "algo", "lvsdb_read_test.lvsdb")
    lvs.read(infile)

    tmp = os.path.join(ut_testtmp, "tmp.lvsdb")
    lvs.write(tmp)

    with open(tmp, 'r') as file:
      tmp_text = file.read()
    with open(infile, 'r') as file:
      infile_text = file.read()
    self.assertEqual(tmp_text, infile_text)

    self.assertEqual(",".join(lvs.layer_names()), "bulk,nwell,poly,poly_lbl,diff_cont,poly_cont,metal1,metal1_lbl,via1,metal2,metal2_lbl,ntie,psd,ptie,nsd")
    self.assertEqual(lvs.layer_name(lvs.layer_by_name("metal1")), "metal1")
    self.assertEqual(lvs.layer_name(lvs.layer_by_index(lvs.layer_of(lvs.layer_by_name("metal1")))), "metal1")

    tmp = os.path.join(ut_testtmp, "tmp.l2n")
    lvs.write_l2n(tmp)

    l2n = pya.LayoutToNetlist()
    l2n.read(tmp)
    self.assertEqual(",".join(l2n.layer_names()), "bulk,nwell,poly,poly_lbl,diff_cont,poly_cont,metal1,metal1_lbl,via1,metal2,metal2_lbl,ntie,psd,ptie,nsd")

    lvs2 = pya.LayoutVsSchematic()
    lvs2.read_l2n(tmp)
    self.assertEqual(",".join(lvs2.layer_names()), "bulk,nwell,poly,poly_lbl,diff_cont,poly_cont,metal1,metal1_lbl,via1,metal2,metal2_lbl,ntie,psd,ptie,nsd")
Exemple #3
0
    def test_1_Basic(self):

        ut_testsrc = os.getenv("TESTSRC")

        ly = pya.Layout()
        ly.read(
            os.path.join(ut_testsrc, "testdata", "algo",
                         "device_extract_l1.gds"))

        l2n = pya.LayoutToNetlist(
            pya.RecursiveShapeIterator(ly, ly.top_cell(), []))

        l2n.threads = 17
        l2n.max_vertex_count = 42
        l2n.area_ratio = 7.5
        self.assertEqual(l2n.threads, 17)
        self.assertEqual(l2n.max_vertex_count, 42)
        self.assertEqual(l2n.area_ratio, 7.5)

        r = l2n.make_layer(ly.layer(6, 0))

        self.assertNotEqual(l2n.internal_layout() is ly, True)
        self.assertEqual(l2n.internal_layout().top_cell().name,
                         ly.top_cell().name)
        self.assertEqual(l2n.internal_top_cell().name, ly.top_cell().name)

        self.assertNotEqual(l2n.layer_of(r),
                            ly.layer(6,
                                     0))  # would be a strange coincidence ...

        cm = l2n.const_cell_mapping_into(ly, ly.top_cell())
        for ci in range(0, l2n.internal_layout().cells()):
            self.assertEqual(l2n.internal_layout().cell(ci).name,
                             ly.cell(cm.cell_mapping(ci)).name)

        ly2 = pya.Layout()
        ly2.create_cell(ly.top_cell().name)

        cm = l2n.cell_mapping_into(ly2, ly2.top_cell())
        self.assertEqual(ly2.cells(), ly.cells())
        for ci in range(0, l2n.internal_layout().cells()):
            self.assertEqual(l2n.internal_layout().cell(ci).name,
                             ly2.cell(cm.cell_mapping(ci)).name)

        rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1")
        bulk_id = l2n.connect_global(rmetal1, "BULK")
        self.assertEqual(l2n.global_net_name(bulk_id), "BULK")
Exemple #4
0
    def test_2_ShapesFromNet(self):

        ut_testsrc = os.getenv("TESTSRC")

        ly = pya.Layout()
        ly.read(
            os.path.join(ut_testsrc, "testdata", "algo",
                         "device_extract_l1.gds"))

        l2n = pya.LayoutToNetlist(
            pya.RecursiveShapeIterator(ly, ly.top_cell(), []))

        # only plain backend connectivity

        rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1")
        rmetal1_lbl = l2n.make_text_layer(ly.layer(6, 1), "metal1_lbl")
        rvia1 = l2n.make_polygon_layer(ly.layer(7, 0), "via1")
        rmetal2 = l2n.make_polygon_layer(ly.layer(8, 0), "metal2")
        rmetal2_lbl = l2n.make_text_layer(ly.layer(8, 1), "metal2_lbl")

        # Intra-layer
        l2n.connect(rmetal1)
        l2n.connect(rvia1)
        l2n.connect(rmetal2)

        # Inter-layer
        l2n.connect(rmetal1, rvia1)
        l2n.connect(rvia1, rmetal2)
        l2n.connect(rmetal1, rmetal1_lbl)  #  attaches labels
        l2n.connect(rmetal2, rmetal2_lbl)  #  attaches labels

        # Perform netlist extraction
        l2n.extract_netlist()

        self.assertEqual(
            str(l2n.netlist()), """circuit TRANS ($1=$1,$2=$2);
end;
circuit INV2 (OUT=OUT,$2=$2,$3=$3,$4=$4);
  subcircuit TRANS $1 ($1=$4,$2=OUT);
  subcircuit TRANS $2 ($1=$3,$2=OUT);
  subcircuit TRANS $3 ($1=$2,$2=$4);
  subcircuit TRANS $4 ($1=$2,$2=$3);
end;
circuit RINGO ();
  subcircuit INV2 $1 (OUT=OSC,$2=FB,$3=VSS,$4=VDD);
  subcircuit INV2 $2 (OUT=$I29,$2=$I20,$3=VSS,$4=VDD);
  subcircuit INV2 $3 (OUT=$I28,$2=$I19,$3=VSS,$4=VDD);
  subcircuit INV2 $4 (OUT=$I30,$2=$I21,$3=VSS,$4=VDD);
  subcircuit INV2 $5 (OUT=$I31,$2=$I22,$3=VSS,$4=VDD);
  subcircuit INV2 $6 (OUT=$I32,$2=$I23,$3=VSS,$4=VDD);
  subcircuit INV2 $7 (OUT=$I33,$2=$I24,$3=VSS,$4=VDD);
  subcircuit INV2 $8 (OUT=$I34,$2=$I25,$3=VSS,$4=VDD);
  subcircuit INV2 $9 (OUT=$I35,$2=$I26,$3=VSS,$4=VDD);
  subcircuit INV2 $10 (OUT=$I36,$2=$I27,$3=VSS,$4=VDD);
end;
""")

        self.assertEqual(repr(l2n.probe_net(rmetal2, pya.DPoint(0.0, 1.8))),
                         "RINGO:FB")
        self.assertEqual(repr(l2n.probe_net(rmetal2, pya.DPoint(-2.0, 1.8))),
                         "None")

        n = l2n.probe_net(rmetal1, pya.Point(2600, 1000))
        self.assertEqual(repr(n), "RINGO:$I20")

        self.assertEqual(
            str(l2n.shapes_of_net(n, rmetal1, True)),
            "(1660,-420;1660,2420;2020,2420;2020,-420);(1840,820;1840,1180;3220,1180;3220,820);(1660,2420;1660,3180;2020,3180;2020,2420);(1660,-380;1660,380;2020,380;2020,-380)"
        )

        shapes = pya.Shapes()
        l2n.shapes_of_net(n, rmetal1, True, shapes)
        r = pya.Region()
        for s in shapes.each():
            r.insert(s.polygon)
        self.assertEqual(
            str(r),
            "(1660,-420;1660,2420;2020,2420;2020,-420);(1840,820;1840,1180;3220,1180;3220,820);(1660,2420;1660,3180;2020,3180;2020,2420);(1660,-380;1660,380;2020,380;2020,-380)"
        )
Exemple #5
0
    def test_20_Antenna(self):

        ut_testsrc = os.getenv("TESTSRC")

        # --- simple antenna check

        input = os.path.join(ut_testsrc, "testdata", "algo", "antenna_l1.gds")
        ly = pya.Layout()
        ly.read(input)

        au = os.path.join(ut_testsrc, "testdata", "algo", "antenna_au1.gds")
        ly_au = pya.Layout()
        ly_au.read(au)

        dss = pya.DeepShapeStore()
        self.assertEqual(dss.is_singular(), False)

        rdiode = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(1, 0)),
                            dss)
        rpoly = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(6, 0)), dss)
        rcont = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(8, 0)), dss)
        rmetal1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(9, 0)),
                             dss)
        rvia1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(11, 0)),
                           dss)
        rmetal2 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(12, 0)),
                             dss)
        self.assertEqual(dss.is_singular(), True)

        l2n = pya.LayoutToNetlist(dss)

        l2n.register(rdiode, "diode")
        l2n.register(rpoly, "poly")
        l2n.register(rcont, "cont")
        l2n.register(rmetal1, "metal1")
        l2n.register(rvia1, "via1")
        l2n.register(rmetal2, "metal2")

        l2n.connect(rpoly)
        l2n.connect(rcont)
        l2n.connect(rmetal1)
        l2n.connect(rpoly, rcont)
        l2n.connect(rcont, rmetal1)

        l2n.extract_netlist()

        a1_3 = l2n.antenna_check(rpoly, rmetal1, 3)
        a1_10 = l2n.antenna_check(rpoly, rmetal1, 10)
        a1_30 = l2n.antenna_check(rpoly, rmetal1, 30)

        # Note: flatten.merged performs some normalization
        self.assertEqual(
            str(a1_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(100, 0)))), "")
        self.assertEqual(
            str(a1_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(101, 0)))), "")
        self.assertEqual(
            str(a1_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(102, 0)))), "")

        # --- same with flat

        l2n._destroy()

        input = os.path.join(ut_testsrc, "testdata", "algo", "antenna_l1.gds")
        ly = pya.Layout()
        ly.read(input)

        au = os.path.join(ut_testsrc, "testdata", "algo", "antenna_au1.gds")
        ly_au = pya.Layout()
        ly_au.read(au)

        rfdiode = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(1, 0)))
        rfpoly = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(6, 0)))
        rfcont = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(8, 0)))
        rfmetal1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(9, 0)))
        rfvia1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(11, 0)))
        rfmetal2 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(12, 0)))
        self.assertEqual(rfdiode.is_deep(), False)
        self.assertEqual(rfpoly.is_deep(), False)
        self.assertEqual(rfmetal1.is_deep(), False)
        self.assertEqual(rfvia1.is_deep(), False)
        self.assertEqual(rfmetal2.is_deep(), False)

        l2n = pya.LayoutToNetlist(ly.top_cell().name, ly.dbu)

        l2n.register(rfdiode, "diode")
        l2n.register(rfpoly, "poly")
        l2n.register(rfcont, "cont")
        l2n.register(rfmetal1, "metal1")
        l2n.register(rfvia1, "via1")
        l2n.register(rfmetal2, "metal2")

        l2n.connect(rfpoly)
        l2n.connect(rfcont)
        l2n.connect(rfmetal1)
        l2n.connect(rfpoly, rfcont)
        l2n.connect(rfcont, rfmetal1)

        l2n.extract_netlist()

        a1_3 = l2n.antenna_check(rfpoly, rfmetal1, 3)
        a1_10 = l2n.antenna_check(rfpoly, rfmetal1, 10)
        a1_30 = l2n.antenna_check(rfpoly, rfmetal1, 30)

        # Note: flatten.merged performs some normalization
        self.assertEqual(
            str(a1_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(100, 0)))), "")
        self.assertEqual(
            str(a1_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(101, 0)))), "")
        self.assertEqual(
            str(a1_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(102, 0)))), "")

        # --- simple antenna check with metal2

        l2n._destroy()
        l2n = pya.LayoutToNetlist(dss)

        l2n.register(rdiode, "diode")
        l2n.register(rpoly, "poly")
        l2n.register(rcont, "cont")
        l2n.register(rmetal1, "metal1")
        l2n.register(rvia1, "via1")
        l2n.register(rmetal2, "metal2")

        l2n.connect(rpoly)
        l2n.connect(rcont)
        l2n.connect(rmetal1)
        l2n.connect(rmetal2)
        l2n.connect(rpoly, rcont)
        l2n.connect(rcont, rmetal1)
        l2n.connect(rmetal1, rvia1)
        l2n.connect(rvia1, rmetal2)

        l2n.extract_netlist()

        a2_5 = l2n.antenna_check(rpoly, rmetal2, 5)
        a2_10 = l2n.antenna_check(rpoly, rmetal2, 10)
        a2_17 = l2n.antenna_check(rpoly, rmetal2, 17)

        # Note: flatten.merged performs some normalization
        self.assertEqual(
            str(a2_5.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(200, 0)))), "")
        self.assertEqual(
            str(a2_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(201, 0)))), "")
        self.assertEqual(
            str(a2_17.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(202, 0)))), "")

        # --- antenna check with diodes and antenna effect reduction

        l2n._destroy()
        l2n = pya.LayoutToNetlist(dss)

        l2n.register(rdiode, "diode")
        l2n.register(rpoly, "poly")
        l2n.register(rcont, "cont")
        l2n.register(rmetal1, "metal1")
        l2n.register(rvia1, "via1")
        l2n.register(rmetal2, "metal2")

        l2n.connect(rdiode)
        l2n.connect(rpoly)
        l2n.connect(rcont)
        l2n.connect(rmetal1)
        l2n.connect(rdiode, rcont)
        l2n.connect(rpoly, rcont)
        l2n.connect(rcont, rmetal1)

        l2n.extract_netlist()

        a3_3 = l2n.antenna_check(rpoly, rmetal1, 3, [[rdiode, 8.0]])
        a3_10 = l2n.antenna_check(rpoly, rmetal1, 10, [[rdiode, 8.0]])
        a3_30 = l2n.antenna_check(rpoly, rmetal1, 30, [[rdiode, 8.0]])

        # Note: flatten.merged performs some normalization
        self.assertEqual(
            str(a3_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(300, 0)))), "")
        self.assertEqual(
            str(a3_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(301, 0)))), "")
        self.assertEqual(
            str(a3_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(302, 0)))), "")

        # --- antenna check with diodes

        l2n._destroy()
        l2n = pya.LayoutToNetlist(dss)

        l2n.register(rdiode, "diode")
        l2n.register(rpoly, "poly")
        l2n.register(rcont, "cont")
        l2n.register(rmetal1, "metal1")
        l2n.register(rvia1, "via1")
        l2n.register(rmetal2, "metal2")

        l2n.connect(rdiode)
        l2n.connect(rpoly)
        l2n.connect(rcont)
        l2n.connect(rmetal1)
        l2n.connect(rdiode, rcont)
        l2n.connect(rpoly, rcont)
        l2n.connect(rcont, rmetal1)

        l2n.extract_netlist()

        a4_3 = l2n.antenna_check(rpoly, rmetal1, 3, [rdiode])
        a4_10 = l2n.antenna_check(rpoly, rmetal1, 10, [rdiode])
        a4_30 = l2n.antenna_check(rpoly, rmetal1, 30, [rdiode])

        # Note: flatten.merged performs some normalization
        self.assertEqual(
            str(a4_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(400, 0)))), "")
        self.assertEqual(
            str(a4_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(401, 0)))), "")
        self.assertEqual(
            str(a4_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(
                ly_au.layer(402, 0)))), "")
Exemple #6
0
    def test_12_LayoutToNetlistExtractionWithDevicesAndGlobalNets(self):

        ut_testsrc = os.getenv("TESTSRC")

        ly = pya.Layout()
        ly.read(
            os.path.join(ut_testsrc, "testdata", "algo",
                         "device_extract_l3.gds"))

        l2n = pya.LayoutToNetlist(
            pya.RecursiveShapeIterator(ly, ly.top_cell(), []))

        rbulk = l2n.make_layer("bulk")
        rnwell = l2n.make_polygon_layer(ly.layer(1, 0), "nwell")
        ractive = l2n.make_polygon_layer(ly.layer(2, 0), "active")
        rpoly = l2n.make_polygon_layer(ly.layer(3, 0), "poly")
        rpoly_lbl = l2n.make_text_layer(ly.layer(3, 1), "poly_lbl")
        rdiff_cont = l2n.make_polygon_layer(ly.layer(4, 0), "diff_cont")
        rpoly_cont = l2n.make_polygon_layer(ly.layer(5, 0), "poly_cont")
        rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1")
        rmetal1_lbl = l2n.make_text_layer(ly.layer(6, 1), "metal1_lbl")
        rvia1 = l2n.make_polygon_layer(ly.layer(7, 0), "via1")
        rmetal2 = l2n.make_polygon_layer(ly.layer(8, 0), "metal2")
        rmetal2_lbl = l2n.make_text_layer(ly.layer(8, 1), "metal2_lbl")
        rpplus = l2n.make_polygon_layer(ly.layer(10, 0), "pplus")
        rnplus = l2n.make_polygon_layer(ly.layer(11, 0), "nplus")

        ractive_in_nwell = ractive & rnwell
        rpactive = ractive_in_nwell & rpplus
        rntie = ractive_in_nwell & rnplus
        rpgate = rpactive & rpoly
        rpsd = rpactive - rpgate

        ractive_outside_nwell = ractive - rnwell
        rnactive = ractive_outside_nwell & rnplus
        rptie = ractive_outside_nwell & rpplus
        rngate = rnactive & rpoly
        rnsd = rnactive - rngate

        # PMOS transistor device extraction
        pmos_ex = pya.DeviceExtractorMOS4Transistor("PMOS")
        l2n.extract_devices(pmos_ex, {
            "SD": rpsd,
            "G": rpgate,
            "P": rpoly,
            "W": rnwell
        })

        # NMOS transistor device extraction
        nmos_ex = pya.DeviceExtractorMOS4Transistor("NMOS")
        l2n.extract_devices(nmos_ex, {
            "SD": rnsd,
            "G": rngate,
            "P": rpoly,
            "W": rbulk
        })

        # Define connectivity for netlist extraction

        l2n.register(rpsd, "psd")
        l2n.register(rnsd, "nsd")
        l2n.register(rptie, "ptie")
        l2n.register(rntie, "ntie")

        # Intra-layer
        l2n.connect(rpsd)
        l2n.connect(rnsd)
        l2n.connect(rnwell)
        l2n.connect(rpoly)
        l2n.connect(rdiff_cont)
        l2n.connect(rpoly_cont)
        l2n.connect(rmetal1)
        l2n.connect(rvia1)
        l2n.connect(rmetal2)
        l2n.connect(rptie)
        l2n.connect(rntie)

        # Inter-layer
        l2n.connect(rpsd, rdiff_cont)
        l2n.connect(rnsd, rdiff_cont)
        l2n.connect(rpoly, rpoly_cont)
        l2n.connect(rpoly_cont, rmetal1)
        l2n.connect(rdiff_cont, rmetal1)
        l2n.connect(rdiff_cont, rntie)
        l2n.connect(rdiff_cont, rptie)
        l2n.connect(rnwell, rntie)
        l2n.connect(rmetal1, rvia1)
        l2n.connect(rvia1, rmetal2)
        l2n.connect(rpoly, rpoly_lbl)  #  attaches labels
        l2n.connect(rmetal1, rmetal1_lbl)  #  attaches labels
        l2n.connect(rmetal2, rmetal2_lbl)  #  attaches labels

        # Global connections
        l2n.connect_global(rptie, "BULK")
        l2n.connect_global(rbulk, "BULK")

        # Perform netlist extraction
        l2n.extract_netlist()

        self.assertEqual(
            str(l2n.netlist()), """circuit RINGO ();
  subcircuit INV2PAIR $1 (BULK=VSS,$2=FB,$3=VDD,$4=VSS,$5=$I11,$6=OSC,$7=VDD);
  subcircuit INV2PAIR $2 (BULK=VSS,$2=$I22,$3=VDD,$4=VSS,$5=FB,$6=$I17,$7=VDD);
  subcircuit INV2PAIR $3 (BULK=VSS,$2=$I23,$3=VDD,$4=VSS,$5=$I17,$6=$I9,$7=VDD);
  subcircuit INV2PAIR $4 (BULK=VSS,$2=$I24,$3=VDD,$4=VSS,$5=$I9,$6=$I10,$7=VDD);
  subcircuit INV2PAIR $5 (BULK=VSS,$2=$I25,$3=VDD,$4=VSS,$5=$I10,$6=$I11,$7=VDD);
end;
circuit INV2PAIR (BULK=BULK,$2=$I8,$3=$I6,$4=$I5,$5=$I3,$6=$I2,$7=$I1);
  subcircuit INV2 $1 ($1=$I1,IN=$I3,$3=$I7,OUT=$I4,VSS=$I5,VDD=$I6,BULK=BULK);
  subcircuit INV2 $2 ($1=$I1,IN=$I4,$3=$I8,OUT=$I2,VSS=$I5,VDD=$I6,BULK=BULK);
end;
circuit INV2 ($1=$1,IN=IN,$3=$3,OUT=OUT,VSS=VSS,VDD=VDD,BULK=BULK);
  device PMOS $1 (S=$3,G=IN,D=VDD,B=$1) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
  device PMOS $2 (S=VDD,G=$3,D=OUT,B=$1) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
  device NMOS $3 (S=$3,G=IN,D=VSS,B=BULK) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
  device NMOS $4 (S=VSS,G=$3,D=OUT,B=BULK) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
  subcircuit TRANS $1 ($1=$3,$2=VSS,$3=IN);
  subcircuit TRANS $2 ($1=$3,$2=VDD,$3=IN);
  subcircuit TRANS $3 ($1=VDD,$2=OUT,$3=$3);
  subcircuit TRANS $4 ($1=VSS,$2=OUT,$3=$3);
end;
circuit TRANS ($1=$1,$2=$2,$3=$3);
end;
""")

        l2n.netlist().combine_devices()
        l2n.netlist().make_top_level_pins()
        l2n.netlist().purge()

        self.assertEqual(
            str(l2n.netlist()),
            """circuit RINGO (FB=FB,OSC=OSC,VDD=VDD,VSS=VSS);
  subcircuit INV2PAIR $1 (BULK=VSS,$2=FB,$3=VDD,$4=VSS,$5=$I11,$6=OSC,$7=VDD);
  subcircuit INV2PAIR $2 (BULK=VSS,$2=$I22,$3=VDD,$4=VSS,$5=FB,$6=$I17,$7=VDD);
  subcircuit INV2PAIR $3 (BULK=VSS,$2=$I23,$3=VDD,$4=VSS,$5=$I17,$6=$I9,$7=VDD);
  subcircuit INV2PAIR $4 (BULK=VSS,$2=$I24,$3=VDD,$4=VSS,$5=$I9,$6=$I10,$7=VDD);
  subcircuit INV2PAIR $5 (BULK=VSS,$2=$I25,$3=VDD,$4=VSS,$5=$I10,$6=$I11,$7=VDD);
end;
circuit INV2PAIR (BULK=BULK,$2=$I8,$3=$I6,$4=$I5,$5=$I3,$6=$I2,$7=$I1);
  subcircuit INV2 $1 ($1=$I1,IN=$I3,$3=$I7,OUT=$I4,VSS=$I5,VDD=$I6,BULK=BULK);
  subcircuit INV2 $2 ($1=$I1,IN=$I4,$3=$I8,OUT=$I2,VSS=$I5,VDD=$I6,BULK=BULK);
end;
circuit INV2 ($1=$1,IN=IN,$3=$3,OUT=OUT,VSS=VSS,VDD=VDD,BULK=BULK);
  device PMOS $1 (S=$3,G=IN,D=VDD,B=$1) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
  device PMOS $2 (S=VDD,G=$3,D=OUT,B=$1) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
  device NMOS $3 (S=$3,G=IN,D=VSS,B=BULK) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
  device NMOS $4 (S=VSS,G=$3,D=OUT,B=BULK) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
end;
""")

        # cleanup now
        l2n._destroy()
Exemple #7
0
    def test_11_LayoutToNetlistExtractionWithDevices(self):

        ut_testsrc = os.getenv("TESTSRC")

        ly = pya.Layout()
        ly.read(
            os.path.join(ut_testsrc, "testdata", "algo",
                         "device_extract_l1.gds"))

        l2n = pya.LayoutToNetlist(
            pya.RecursiveShapeIterator(ly, ly.top_cell(), []))

        rnwell = l2n.make_layer(ly.layer(1, 0), "nwell")
        ractive = l2n.make_layer(ly.layer(2, 0), "active")
        rpoly = l2n.make_polygon_layer(ly.layer(3, 0), "poly")
        rpoly_lbl = l2n.make_text_layer(ly.layer(3, 1), "poly_lbl")
        rdiff_cont = l2n.make_polygon_layer(ly.layer(4, 0), "diff_cont")
        rpoly_cont = l2n.make_polygon_layer(ly.layer(5, 0), "poly_cont")
        rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1")
        rmetal1_lbl = l2n.make_text_layer(ly.layer(6, 1), "metal1_lbl")
        rvia1 = l2n.make_polygon_layer(ly.layer(7, 0), "via1")
        rmetal2 = l2n.make_polygon_layer(ly.layer(8, 0), "metal2")
        rmetal2_lbl = l2n.make_text_layer(ly.layer(8, 1), "metal2_lbl")

        rpactive = ractive & rnwell
        rpgate = rpactive & rpoly
        rpsd = rpactive - rpgate

        rnactive = ractive - rnwell
        rngate = rnactive & rpoly
        rnsd = rnactive - rngate

        # PMOS transistor device extraction
        pmos_ex = pya.DeviceExtractorMOS3Transistor("PMOS")
        l2n.extract_devices(pmos_ex, {"SD": rpsd, "G": rpgate, "P": rpoly})

        # NMOS transistor device extraction
        nmos_ex = pya.DeviceExtractorMOS3Transistor("NMOS")
        l2n.extract_devices(nmos_ex, {"SD": rnsd, "G": rngate, "P": rpoly})

        # Define connectivity for netlist extraction

        l2n.register(rpsd, "psd")
        l2n.register(rnsd, "nsd")

        # Intra-layer
        l2n.connect(rpsd)
        l2n.connect(rnsd)
        l2n.connect(rpoly)
        l2n.connect(rdiff_cont)
        l2n.connect(rpoly_cont)
        l2n.connect(rmetal1)
        l2n.connect(rvia1)
        l2n.connect(rmetal2)

        # Inter-layer
        l2n.connect(rpsd, rdiff_cont)
        l2n.connect(rnsd, rdiff_cont)
        l2n.connect(rpoly, rpoly_cont)
        l2n.connect(rpoly_cont, rmetal1)
        l2n.connect(rdiff_cont, rmetal1)
        l2n.connect(rmetal1, rvia1)
        l2n.connect(rvia1, rmetal2)
        l2n.connect(rpoly, rpoly_lbl)  #  attaches labels
        l2n.connect(rmetal1, rmetal1_lbl)  #  attaches labels
        l2n.connect(rmetal2, rmetal2_lbl)  #  attaches labels

        # Perform netlist extraction
        l2n.extract_netlist()

        self.assertEqual(
            str(l2n.netlist()), """circuit RINGO ();
  subcircuit INV2 $1 (IN=$I8,$2=FB,OUT=OSC,$4=VSS,$5=VDD);
  subcircuit INV2 $2 (IN=FB,$2=$I38,OUT=$I19,$4=VSS,$5=VDD);
  subcircuit INV2 $3 (IN=$I19,$2=$I39,OUT=$I1,$4=VSS,$5=VDD);
  subcircuit INV2 $4 (IN=$I1,$2=$I40,OUT=$I2,$4=VSS,$5=VDD);
  subcircuit INV2 $5 (IN=$I2,$2=$I41,OUT=$I3,$4=VSS,$5=VDD);
  subcircuit INV2 $6 (IN=$I3,$2=$I42,OUT=$I4,$4=VSS,$5=VDD);
  subcircuit INV2 $7 (IN=$I4,$2=$I43,OUT=$I5,$4=VSS,$5=VDD);
  subcircuit INV2 $8 (IN=$I5,$2=$I44,OUT=$I6,$4=VSS,$5=VDD);
  subcircuit INV2 $9 (IN=$I6,$2=$I45,OUT=$I7,$4=VSS,$5=VDD);
  subcircuit INV2 $10 (IN=$I7,$2=$I46,OUT=$I8,$4=VSS,$5=VDD);
end;
circuit INV2 (IN=IN,$2=$2,OUT=OUT,$4=$4,$5=$5);
  device PMOS $1 (S=$2,G=IN,D=$5) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
  device PMOS $2 (S=$5,G=$2,D=OUT) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
  device NMOS $3 (S=$2,G=IN,D=$4) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
  device NMOS $4 (S=$4,G=$2,D=OUT) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
  subcircuit TRANS $1 ($1=$2,$2=$4,$3=IN);
  subcircuit TRANS $2 ($1=$2,$2=$5,$3=IN);
  subcircuit TRANS $3 ($1=$5,$2=OUT,$3=$2);
  subcircuit TRANS $4 ($1=$4,$2=OUT,$3=$2);
end;
circuit TRANS ($1=$1,$2=$2,$3=$3);
end;
""")

        # cleanup now
        l2n._destroy()
Exemple #8
0
    def test_10_LayoutToNetlistExtractionWithoutDevices(self):

        ut_testsrc = os.getenv("TESTSRC")

        ly = pya.Layout()
        ly.read(
            os.path.join(ut_testsrc, "testdata", "algo",
                         "device_extract_l1.gds"))

        l2n = pya.LayoutToNetlist(
            pya.RecursiveShapeIterator(ly, ly.top_cell(), []))

        # only plain connectivity

        ractive = l2n.make_layer(ly.layer(2, 0), "active")
        rpoly = l2n.make_polygon_layer(ly.layer(3, 0), "poly")
        rpoly_lbl = l2n.make_text_layer(ly.layer(3, 1), "poly_lbl")
        rdiff_cont = l2n.make_polygon_layer(ly.layer(4, 0), "diff_cont")
        rpoly_cont = l2n.make_polygon_layer(ly.layer(5, 0), "poly_cont")
        rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1")
        rmetal1_lbl = l2n.make_text_layer(ly.layer(6, 1), "metal1_lbl")
        rvia1 = l2n.make_polygon_layer(ly.layer(7, 0), "via1")
        rmetal2 = l2n.make_polygon_layer(ly.layer(8, 0), "metal2")
        rmetal2_lbl = l2n.make_text_layer(ly.layer(8, 1), "metal2_lbl")

        rsd = ractive - rpoly

        l2n.register(rsd, "sd")

        # Intra-layer
        l2n.connect(rsd)
        l2n.connect(rpoly)
        l2n.connect(rdiff_cont)
        l2n.connect(rpoly_cont)
        l2n.connect(rmetal1)
        l2n.connect(rvia1)
        l2n.connect(rmetal2)

        # Inter-layer
        l2n.connect(rsd, rdiff_cont)
        l2n.connect(rpoly, rpoly_cont)
        l2n.connect(rpoly_cont, rmetal1)
        l2n.connect(rdiff_cont, rmetal1)
        l2n.connect(rmetal1, rvia1)
        l2n.connect(rvia1, rmetal2)
        l2n.connect(rpoly, rpoly_lbl)  #  attaches labels
        l2n.connect(rmetal1, rmetal1_lbl)  #  attaches labels
        l2n.connect(rmetal2, rmetal2_lbl)  #  attaches labels

        # Perform netlist extraction
        l2n.extract_netlist()

        self.assertEqual(
            str(l2n.netlist()), """circuit TRANS ($1=$1,$2=$2,$3=$3);
end;
circuit INV2 (IN=IN,$2=$2,OUT=OUT,$4=$4,$5=$5);
  subcircuit TRANS $1 ($1=$2,$2=$4,$3=IN);
  subcircuit TRANS $2 ($1=$2,$2=$5,$3=IN);
  subcircuit TRANS $3 ($1=$5,$2=OUT,$3=$2);
  subcircuit TRANS $4 ($1=$4,$2=OUT,$3=$2);
end;
circuit RINGO ();
  subcircuit INV2 $1 (IN=$I8,$2=FB,OUT=OSC,$4=VSS,$5=VDD);
  subcircuit INV2 $2 (IN=FB,$2=$I38,OUT=$I19,$4=VSS,$5=VDD);
  subcircuit INV2 $3 (IN=$I19,$2=$I39,OUT=$I1,$4=VSS,$5=VDD);
  subcircuit INV2 $4 (IN=$I1,$2=$I40,OUT=$I2,$4=VSS,$5=VDD);
  subcircuit INV2 $5 (IN=$I2,$2=$I41,OUT=$I3,$4=VSS,$5=VDD);
  subcircuit INV2 $6 (IN=$I3,$2=$I42,OUT=$I4,$4=VSS,$5=VDD);
  subcircuit INV2 $7 (IN=$I4,$2=$I43,OUT=$I5,$4=VSS,$5=VDD);
  subcircuit INV2 $8 (IN=$I5,$2=$I44,OUT=$I6,$4=VSS,$5=VDD);
  subcircuit INV2 $9 (IN=$I6,$2=$I45,OUT=$I7,$4=VSS,$5=VDD);
  subcircuit INV2 $10 (IN=$I7,$2=$I46,OUT=$I8,$4=VSS,$5=VDD);
end;
""")
Exemple #9
0
    def test_2_ShapesFromNet(self):

        ut_testsrc = os.getenv("TESTSRC")

        ly = pya.Layout()
        ly.read(
            os.path.join(ut_testsrc, "testdata", "algo",
                         "device_extract_l1_with_inv_nodes.gds"))

        l2n = pya.LayoutToNetlist(
            pya.RecursiveShapeIterator(ly, ly.top_cell(), []))

        # only plain backend connectivity

        rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1")
        rmetal1_lbl = l2n.make_text_layer(ly.layer(6, 1), "metal1_lbl")
        rvia1 = l2n.make_polygon_layer(ly.layer(7, 0), "via1")
        rmetal2 = l2n.make_polygon_layer(ly.layer(8, 0), "metal2")
        rmetal2_lbl = l2n.make_text_layer(ly.layer(8, 1), "metal2_lbl")

        # Intra-layer
        l2n.connect(rmetal1)
        l2n.connect(rvia1)
        l2n.connect(rmetal2)

        # Inter-layer
        l2n.connect(rmetal1, rvia1)
        l2n.connect(rvia1, rmetal2)
        l2n.connect(rmetal1, rmetal1_lbl)  #  attaches labels
        l2n.connect(rmetal2, rmetal2_lbl)  #  attaches labels

        # Perform netlist extraction
        l2n.extract_netlist()

        self.assertEqual(
            str(l2n.netlist()), """circuit TRANS ($1=$1,$2=$2);
end;
circuit INV2 (OUT=OUT,$2=$3,$3=$4);
  subcircuit TRANS $1 ($1=$4,$2=OUT);
  subcircuit TRANS $2 ($1=$3,$2=OUT);
  subcircuit TRANS $3 ($1=$2,$2=$4);
  subcircuit TRANS $4 ($1=$2,$2=$3);
end;
circuit RINGO ();
  subcircuit INV2 $1 (OUT='FB,OSC',$2=VSS,$3=VDD);
  subcircuit INV2 $2 (OUT=$I20,$2=VSS,$3=VDD);
  subcircuit INV2 $3 (OUT=$I19,$2=VSS,$3=VDD);
  subcircuit INV2 $4 (OUT=$I21,$2=VSS,$3=VDD);
  subcircuit INV2 $5 (OUT=$I22,$2=VSS,$3=VDD);
  subcircuit INV2 $6 (OUT=$I23,$2=VSS,$3=VDD);
  subcircuit INV2 $7 (OUT=$I24,$2=VSS,$3=VDD);
  subcircuit INV2 $8 (OUT=$I25,$2=VSS,$3=VDD);
  subcircuit INV2 $9 (OUT=$I26,$2=VSS,$3=VDD);
  subcircuit INV2 $10 (OUT=$I27,$2=VSS,$3=VDD);
end;
""")

        self.assertEqual(str(l2n.probe_net(rmetal2, pya.DPoint(0.0, 1.8))),
                         "RINGO:FB,OSC")
        sc_path = []
        self.assertEqual(
            str(l2n.probe_net(rmetal2, pya.DPoint(0.0, 1.8), sc_path)),
            "RINGO:FB,OSC")
        self.assertEqual(len(sc_path), 0)
        self.assertEqual(repr(l2n.probe_net(rmetal2, pya.DPoint(-2.0, 1.8))),
                         "None")

        n = l2n.probe_net(rmetal1, pya.Point(2600, 1000), None)
        self.assertEqual(str(n), "INV2:$2")
        sc_path = []
        n = l2n.probe_net(rmetal1, pya.Point(2600, 1000), sc_path)
        self.assertEqual(str(n), "INV2:$2")
        self.assertEqual(len(sc_path), 1)
        a = []
        t = pya.DCplxTrans()
        for sc in sc_path:
            a.append(sc.expanded_name())
            t = t * sc.trans
        self.assertEqual(",".join(a), "$2")
        self.assertEqual(str(t), "r0 *1 2.64,0")

        self.assertEqual(
            str(l2n.shapes_of_net(n, rmetal1, True)),
            "(-980,-420;-980,2420;-620,2420;-620,-420);(-800,820;-800,1180;580,1180;580,820);(-980,2420;-980,3180;-620,3180;-620,2420);(-980,-380;-980,380;-620,380;-620,-380)"
        )

        shapes = pya.Shapes()
        l2n.shapes_of_net(n, rmetal1, True, shapes)
        r = pya.Region()
        for s in shapes.each():
            r.insert(s.polygon)
        self.assertEqual(
            str(r),
            "(-980,-420;-980,2420;-620,2420;-620,-420);(-800,820;-800,1180;580,1180;580,820);(-980,2420;-980,3180;-620,3180;-620,2420);(-980,-380;-980,380;-620,380;-620,-380)"
        )