Exemple #1
0
    def update(
        self,
        transitions: List[Transition],
        model_weights: np.ndarray,
        t: int = None,
    ):
        test_X = [trans.X for trans in transitions]
        test_w = [trans.w for trans in transitions]

        reference_nr_part = self.nr_particles
        target_cv = self.mean_cv
        cv_estimate = predict_population_size(
            reference_nr_part,
            target_cv,
            lambda nr_particles: calc_cv(
                nr_particles,
                model_weights,
                self.n_bootstrap,
                test_w,
                transitions,
                test_X,
            )[0],
        )

        if not np.isnan(cv_estimate.n_estimated):
            self.nr_particles = max(
                min(int(cv_estimate.n_estimated), self.max_population_size),
                self.min_population_size,
            )

        logger.info("Change nr particles {} -> {}".format(
            reference_nr_part, self.nr_particles))
Exemple #2
0
    def adapt_population_size(self, transitions: List[Transition],
                              model_weights: np.ndarray):
        test_X = [trans.X for trans in transitions]
        test_w = [trans.w for trans in transitions]

        N_BOOTSTR = 5

        reference_nr_part = self.nr_particles
        target_cv = self.mean_cv
        cv_estimate = predict_population_size(
            reference_nr_part, target_cv, lambda nr_particles: calc_cv(
                nr_particles, model_weights, N_BOOTSTR, test_w, transitions,
                test_X)[0])

        if not np.isnan(cv_estimate.n_estimated):
            self.nr_particles = max(
                min(int(cv_estimate.n_estimated), self.max_population_size),
                self.min_population_size)

        adaptation_logger.info("Change nr particles {} -> {}".format(
            reference_nr_part, self.nr_particles))