Exemple #1
0
def boxplot_duration(df_act, y_scale='norm', idle=False, figsize=(10, 8)):
    """
        plot a boxplot of activity durations (mean) max min 
    """
    assert y_scale in ['norm', 'log']

    if idle:
        df_act = add_idle(df_act)
    df = activities_duration_dist(df_act)

    # select data for each device
    activities = df['activity'].unique()
    df['seconds'] = df['minutes'] * 60

    dat = []
    for activity in activities:
        df_activity = df[df['activity'] == activity]
        #tmp = np.log(df_device['td'].dt.total_seconds())
        dat.append(df_activity['seconds'])

    # plot boxsplot
    fig, ax = plt.subplots(figsize=figsize)
    ax.boxplot(dat, vert=False)
    ax.set_title('Activity durations')
    ax.set_yticklabels(activities, ha='right')
    ax.set_xlabel('log seconds')
    ax.set_xscale('log')

    # create secondary axis with

    # create secondary axis with time format 1s, 1m, 1d
    ax_top = ax.secondary_xaxis('top', functions=(lambda x: x, lambda x: x))
    #ax_top.set_xlabel('time')
    ax_top.xaxis.set_major_formatter(ticker.FuncFormatter(func_formatter_sec))
    return fig
Exemple #2
0
def hist_cum_duration(df_act, y_scale=None, idle=False, figsize=(9, 3)):
    """ plots the cummulated activities durations in a histogram for each activity 
    """
    assert y_scale in [None, 'log']

    title = 'Cummulative activity durations'
    if y_scale == 'log':
        xlabel = 'log seconds'
    else:
        xlabel = 'seconds'
    if idle:
        df_act = add_idle(df_act)

    act_dur = activities_durations(df_act)
    df = act_dur[['minutes']]
    df.reset_index(level=0, inplace=True)
    df = df.sort_values(by=['minutes'], axis=0)
    # TODO change in activities duration to return time in seconds
    df['seconds'] = df['minutes'] * 60

    # plot
    fig, ax = plt.subplots(figsize=figsize)
    plt.title(title)
    plt.xlabel(xlabel)
    ax.barh(df['activity'], df['seconds'])
    if y_scale == 'log':
        ax.set_xscale('log')

    # create secondary axis with time format 1s, 1m, 1d
    ax_top = ax.secondary_xaxis('top', functions=(lambda x: x, lambda x: x))
    ax_top.set_xlabel('time')
    ax_top.xaxis.set_major_formatter(ticker.FuncFormatter(func_formatter_sec))
    return fig
Exemple #3
0
def heatmap_transitions(df_act, z_scale=None, figsize=(8, 6), idle=False):
    """    """
    assert z_scale in [None,
                       'log'], 'z-scale has to be either of type None or log'

    title = 'Activity transitions'
    z_label = 'count'

    df_act = add_idle(df_act) if idle else df_act

    # get the list of cross tabulations per t_window
    df = activities_transitions(df_act)
    act_lst = list(df.columns)
    x_labels = act_lst
    y_labels = act_lst
    values = df.values

    log = True if z_scale == 'log' else False
    valfmt = '{x:.0f}'

    # begin plotting
    fig, ax = plt.subplots(figsize=figsize)
    im, cbar = heatmap_square(values,
                              y_labels,
                              x_labels,
                              log=log,
                              ax=ax,
                              cbarlabel=z_label)
    texts = annotate_heatmap(im,
                             textcolors=("white", "black"),
                             log=log,
                             valfmt=valfmt)
    ax.set_title(title)

    return fig
Exemple #4
0
def heatmap_contingency_overlaps(df_dev,
                                 df_act,
                                 figsize=(18, 12),
                                 z_scale='log',
                                 idle=False):
    """
    
    """
    cbarlabel = 'second overlap'
    title = 'Cross correlation activites'

    if idle:
        df_act = add_idle(df_act.copy())

    df_con = contingency_table_interval_overlaps(df_act, df_dev)

    tmp = df_con.reset_index()
    tmp['index'] = tmp['device'] + ' ' + tmp['val'].astype(str)
    tmp = tmp.set_index('index')
    tmp = tmp.drop(['device', 'val'], axis=1)

    # convert time to seconds
    tmp = tmp.astype(int) / 1000000000

    vals = tmp.values.T
    acts = tmp.columns
    devs = list(tmp.index)

    #if z_scale == 'log':
    #    format_func = lambda x, p: func_formatter_sec(np.exp(x), p)
    #else:
    format_func = lambda x, p: func_formatter_sec(x, p)

    valfmt = matplotlib.ticker.FuncFormatter(format_func)

    heatmap_contingency(vals,
                        acts,
                        devs,
                        cbarlabel,
                        title,
                        valfmt,
                        figsize,
                        z_scale=z_scale)
Exemple #5
0
def hist_counts(df_act, y_scale=None, idle=False, figsize=(9, 3)):
    """ plots the activities durations against each other
    """
    assert y_scale in [None, 'log']
    df_act = df_act.copy()

    col_label = 'occurence'
    title = 'Activity occurrences'
    xlabel = 'counts'

    if idle:
        df_act = add_idle(df_act)
    df = activities_count(df_act)
    df.reset_index(level=0, inplace=True)
    df = df.sort_values(by=['occurence'], axis=0)

    # plot
    fig, ax = plt.subplots(figsize=figsize)
    plt.title(title)
    plt.xlabel(xlabel)
    ax.barh(df['activity'], df['occurence'])
    if y_scale == 'log':
        ax.set_xscale('log')
    return fig
Exemple #6
0
def ridge_line(df_acts=None,
               lst_acts=None,
               df_act_dist=None,
               idle=False,
               n=1000,
               ylim_upper=None,
               color=None,
               figsize=None,
               file_path=None):
    """
    Plots the activity density distribution over one day.

    Parameters
    ----------
    df_acts : pd.DataFrame, optional
        recorded activities from a dataset. Fore more information refer to the
        :ref:`user guide<activity_dataframe>`.
    lst_acts : lst of str, optional
        A list of activities that are included in the statistic. The list can be a
        subset of the recorded activities or contain activities that are not recorded.
    df_act_dist : pd.DataFrame, optional
        A precomputed activity density distribution. If the *df_trans* parameter is given, parameters
        *df_acts* and *lst_acts* are ignored. The transition table can be computed
        in :ref:`stats <stats_acts_trans>`.
    n : int, default=1000
        The number of monte-carlo samples to draw.
    ylim_upper: float, optional
        The offset from the top of the plot to the first ridge_line. Set this if
        the automatically determined value is not satisfying.
    figsize : (float, float), default: None
        width, height in inches. If not provided, the figsize is inferred by automatically.
    color : str, optional
        sets the color of the plot. When not set, the primary theming color is used.
        Learn more about theming in the :ref:`user guide <theming>`
    idle : bool, default: False
        Determines whether gaps between activities should be assigned
        the activity *idle* or be ignored.
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plots import plot_activity_ridgeline
    >>> plot_activity_ridgeline(data.df_activities)

    .. image:: ../_static/images/plots/act_ridge_line.png
       :height: 300px
       :width: 500 px
       :scale: 90 %
       :alt: alternate text
       :align: center

    Returns
    -------
    res : fig or None
        Either a figure if file_path is not specified or nothing.
    """
    assert not (df_acts is None and df_act_dist is None)

    title = 'Activity distribution over one day'
    xlabel = 'day'
    color = (get_primary_color() if color is None else color)

    if df_act_dist is None:
        if idle:
            df_acts = add_idle(df_acts)
        df = activities_dist(df_acts.copy(), lst_acts=lst_acts, n=n)
        if df.empty:
            raise ValueError(
                "no activity was recorded and no activity list was given.")
    else:
        df = df_act_dist

    def date_2_second(date):
        """ maps time onto seconds of a day 
        Parameters
        ----------
        date : np.datetime64
            all the dates are on the day 1990-01-01

        Returns
        -------

        """
        if pd.isnull(date):
            return -1
        val = (date - np.datetime64('1990-01-01')) / np.timedelta64(1, 's')
        total_seconds = 60 * 60 * 24
        assert val <= total_seconds and val >= 0
        return int(val)

    df = df.apply(np.vectorize(date_2_second))
    # sort every columns values ascending
    for col in df.columns:
        df[col] = df[col].sort_values()

    grouped = [(col, df[col].values) for col in df.columns]
    acts, data = zip(*grouped)
    num_act = len(list(acts))

    # infer visual properties
    figsize = (_num_items_2_ridge_figsize(num_act)
               if figsize is None else figsize)
    ylim_upper = (_num_items_2_ridge_ylimit(num_act)
                  if ylim_upper is None else ylim_upper)

    # plot the ridgeline
    fig, ax = plt.subplots(figsize=figsize)
    ridgeline(data,
              labels=acts,
              overlap=.85,
              fill=color,
              n_points=100,
              dist_scale=0.13)
    plt.title(title)

    plt.gca().spines['left'].set_visible(False)
    plt.gca().spines['right'].set_visible(False)
    plt.gca().spines['top'].set_visible(False)
    plt.ylim((0, ylim_upper))
    plt.xlabel(xlabel)

    # set xaxis labels
    def func(x, p):
        #x = x + 0.5
        #if x == 0.0 or str(x)[-1:] == '5':
        #    return ''
        #else:
        if True:
            if np.ceil(x / k) < 10:
                return '0{}:00'.format(int(x / k) + 1)
            else:
                return '{}:00'.format(int(x / k) + 1)

    a = 0
    b = 60 * 60 * 24
    k = (b - a) / 24

    plt.xlim((a, b))
    tcks_pos = np.arange(0, 23) * k + (-0.5 + k)

    x_locator = ticker.FixedLocator(tcks_pos)
    ax.xaxis.set_major_formatter(ticker.FuncFormatter(func))
    ax.xaxis.set_major_locator(x_locator)
    fig.autofmt_xdate(rotation=45)

    plt.grid(zorder=0)

    if file_path is not None:
        savefig(fig, file_path)
        return
    else:
        return fig
Exemple #7
0
def heatmap_transitions(df_acts=None,
                        lst_acts=None,
                        df_trans=None,
                        z_scale="linear",
                        figsize=None,
                        idle=False,
                        numbers=True,
                        grid=True,
                        cmap=None,
                        file_path=None):
    """
    Parameters
    ----------
    df_acts : pd.DataFrame, optional
        recorded activities from a dataset. Fore more information refer to the
        :ref:`user guide<activity_dataframe>`.
    lst_acts : lst of str, optional
        A list of activities that are included in the statistic. The list can be a
        subset of the recorded activities or contain activities that are not recorded.
    df_trans : pd.DataFrame
        A precomputed transition table. If the *df_trans* parameter is given, parameters
        *df_acts* and *lst_acts* are ignored. The transition table can be computed
        in :ref:`stats <stats_acts_trans>`.
    figsize : (float, float), default: None
        width, height in inches. If not provided, the figsize is inferred by automatically.
    z_scale : {"log", "linear"}, default: None
        The axis scale type to apply.
    numbers : bool, default: True
        Whether to display numbers inside the heatmaps fields or not.
    idle : bool, default: False
        Determines whether gaps between activities should be assigned
        the activity *idle* or be ignored.
    cmap : str or Colormap, optional
        The Colormap instance or registered colormap name used to map scalar
        data to colors. This parameter is ignored for RGB(A) data.
        Defaults 'viridis'.
    grid : bool, default: True
        determines whether to display a white grid, seperating the fields or not.
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plots import plot_activity_hm_transitions
    >>> plot_activity_hm_transitions(data.df_activities)

    .. image:: ../_static/images/plots/act_hm_trans.png
       :height: 300px
       :width: 500 px
       :scale: 90 %
       :alt: alternate text
       :align: center


    Returns
    -------
    res : fig or None
        Either a figure if file_path is not specified or nothing.
    """
    assert z_scale in [None,
                       'log'], 'z-scale has to be either of type None or log'
    assert not (df_acts is None and df_trans is None)

    title = 'Activity transitions'
    z_label = 'count'

    if df_trans is None:
        df_acts = add_idle(df_acts) if idle else df_acts
        df = activities_transitions(df_acts, lst_acts=lst_acts)
    else:
        df = df_trans

    # get the list of cross tabulations per t_window
    act_lst = list(df.columns)

    num_act = len(act_lst)
    figsize = (_num_items_2_heatmap_square_figsize(num_act)
               if figsize is None else figsize)
    cmap = (get_sequential_color() if cmap is None else cmap)

    x_labels = act_lst
    y_labels = act_lst
    values = df.values

    log = True if z_scale == 'log' else False
    valfmt = '{x:.0f}'

    # begin plotting
    fig, ax = plt.subplots(figsize=figsize)
    im, cbar = heatmap_square(values,
                              y_labels,
                              x_labels,
                              log=log,
                              cmap=cmap,
                              ax=ax,
                              cbarlabel=z_label,
                              grid=grid)
    if numbers:
        texts = annotate_heatmap(im,
                                 textcolors=("white", "black"),
                                 log=log,
                                 valfmt=valfmt)
    ax.set_title(title)

    if file_path is not None:
        savefig(fig, file_path)
        return
    else:
        return fig
Exemple #8
0
def hist_cum_duration(df_acts=None,
                      lst_acts=None,
                      df_dur=None,
                      y_scale=None,
                      idle=False,
                      figsize=None,
                      color=None,
                      file_path=None):
    """
    Plots the cumulative duration for each activity in a bar plot.

    Parameters
    ----------
    df_acts : pd.DataFrame, optional
        recorded activities from a dataset. Fore more information refer to the
        :ref:`user guide<activity_dataframe>`.
    lst_acts : lst of str, optional
        A list of activities that are included in the statistic. The list can be a
        subset of the recorded activities or contain activities that are not recorded.
    y_scale : {"log", "linear"}, default: None
        The axis scale type to apply.
    idle : bool, default: False
        Determines whether gaps between activities should be assigned
        the activity *idle* or be ignored.
    figsize : (float, float), default: None
        width, height in inches. If not provided, the figsize is inferred by automatically.
    color : str, optional
        sets the color of the plot. When not set, the primary theming color is used.
        Learn more about theming in the :ref:`user guide <theming>`
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plots import plot_activity_bar_duration
    >>> plot_activity_bar_duration(data.df_activities)

    .. image:: ../_static/images/plots/act_bar_dur.png
       :height: 300px
       :width: 500 px
       :scale: 90 %
       :alt: alternate text
       :align: center

    Returns
    -------
    res : fig or None
        Either a figure if file_path is not specified or nothing
    """
    assert y_scale in [None, 'log']
    assert not (df_acts is None and df_dur is None)

    title = 'Cummulative activity durations'
    xlabel = 'seconds'
    freq = 'seconds'
    color = (get_primary_color() if color is None else color)

    if df_dur is None:
        if idle:
            df_acts = add_idle(df_acts.copy())
        df = activity_durations(df_acts, lst_acts=lst_acts, time_unit=freq)
    else:
        df = df_dur
    df = df.sort_values(by=[freq], axis=0)

    num_act = len(df)
    figsize = (_num_bars_2_figsize(num_act) if figsize is None else figsize)

    # plot
    fig, ax = plt.subplots(figsize=figsize)
    plt.title(title)
    plt.xlabel(xlabel)
    ax.barh(df['activity'], df['seconds'], color=color)
    if y_scale == 'log':
        ax.set_xscale('log')

    # create secondary axis with time format 1s, 1m, 1d
    ax_top = ax.secondary_xaxis('top', functions=(lambda x: x, lambda x: x))
    ax_top.set_xlabel('time')
    ax_top.xaxis.set_major_formatter(
        ticker.FuncFormatter(func_formatter_seconds2time))

    if file_path is not None:
        savefig(fig, file_path)
        return
    else:
        return fig
Exemple #9
0
def hist_counts(df_acts=None,
                lst_acts=None,
                df_ac=None,
                y_scale="linear",
                idle=False,
                figsize=None,
                color=None,
                file_path=None):
    """
    Plot a bar chart displaying how often activities are occurring.

    Parameters
    ----------
    df_acts : pd.DataFrame, optional
        recorded activities from a dataset. Fore more information refer to the
        :ref:`user guide<activity_dataframe>`.
    lst_acts : lst of str, optional
        A list of activities that are included in the statistic. The list can be a
        subset of the recorded activities or contain activities that are not recorded.
    idle : bool, default: False
        Determines whether gaps between activities should be assigned
        the activity *idle* or be ignored.
    y_scale : {"log", "linear"}, default: linear
        The axis scale type to apply.
    figsize : (float, float), default: None
        width, height in inches. If not provided, the figsize is inferred by automatically.
    color : str, optional
        sets the color of the plot. When not set, the primary theming color is used.
        Learn more about theming in the :ref:`user guide <theming>`
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plot import plot_activity_bar_count
    >>> plot_activity_bar_count(data.df_activities, idle=True);

    .. image:: ../_static/images/plots/act_bar_cnt.png
       :height: 300px
       :width: 500 px
       :scale: 90 %
       :alt: alternate text
       :align: center

    Returns
    -------
    res : fig or None
        Either a figure if file_path is not specified or nothing 
    """
    assert not (df_acts is None and df_ac is None)
    assert y_scale in [None, 'log']

    title = 'Activity occurrences'
    col_label = 'occurrence'
    xlabel = 'counts'
    color = (get_primary_color() if color is None else color)

    # create statistics if the don't exists
    if df_ac is None:
        df_acts = df_acts.copy()
        if idle:
            df_acts = add_idle(df_acts)
        df = activities_count(df_acts, lst_acts=lst_acts)
    else:
        df = df_ac

    # prepare dataframe for plotting
    df.reset_index(level=0, inplace=True)
    df = df.sort_values(by=[col_label], axis=0)

    # define plot modalities
    num_act = len(df)
    figsize = (_num_bars_2_figsize(num_act) if figsize is None else figsize)

    # create plot
    fig, ax = plt.subplots(figsize=figsize)
    plt.title(title)
    plt.xlabel(xlabel)
    ax.barh(df['activity'], df[col_label], color=color)

    if y_scale == 'log':
        ax.set_xscale('log')

    # save or return fig
    if file_path is not None:
        savefig(fig, file_path)
        return
    else:
        return fig
Exemple #10
0
def boxplot_duration(df_acts,
                     lst_acts=None,
                     y_scale=None,
                     idle=False,
                     figsize=None,
                     file_path=None):
    """
    Plot a boxplot for activity durations.

    Parameters
    ----------
    df_acts : pd.DataFrame, optional
        recorded activities from a dataset. Fore more information refer to the
        :ref:`user guide<activity_dataframe>`.
    lst_acts : lst of str, optional
        A list of activities that are included in the statistic. The list can be a
        subset of the recorded activities or contain activities that are not recorded.
    figsize : (float, float), default: None
        width, height in inches. If not provided, the figsize is inferred by automatically.
    y_scale : {"log", "linear"}, default: None
        The axis scale type to apply.
    idle : bool, default: False
        Determines whether gaps between activities should be assigned
        the activity *idle* or be ignored.
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plots import plot_devices_bp_duration
    >>> plot_devices_bp_duration(data.df_activities)

    .. image:: ../_static/images/plots/act_bp.png
       :height: 300px
       :width: 500 px
       :scale: 90 %
       :alt: alternate text
       :align: center

    Returns
    -------
    res : fig or None
        Either a figure if file_path is not specified or nothing
    """
    assert y_scale in [None, 'log']

    title = 'Activity durations'
    xlabel = 'seconds'

    if idle:
        df_acts = add_idle(df_acts)

    df = activities_duration_dist(df_acts, lst_acts=lst_acts)
    # select data for each device
    activities = df['activity'].unique()
    df['seconds'] = df['minutes'] * 60

    num_act = len(activities)
    figsize = (_num_bars_2_figsize(num_act) if figsize is None else figsize)

    dat = []
    for activity in activities:
        df_activity = df[df['activity'] == activity]
        #tmp = np.log(df_device['td'].dt.total_seconds())
        dat.append(df_activity['seconds'])

    # plot boxsplot
    fig, ax = plt.subplots(figsize=figsize)
    ax.boxplot(dat, vert=False)
    ax.set_title(title)
    ax.set_yticklabels(activities, ha='right')
    ax.set_xlabel(xlabel)
    ax.set_xscale('log')

    # create secondary axis with time format 1s, 1m, 1d
    ax_top = ax.secondary_xaxis('top', functions=(lambda x: x, lambda x: x))
    #ax_top.set_xlabel('time')
    ax_top.xaxis.set_major_formatter(
        ticker.FuncFormatter(func_formatter_seconds2time))

    if file_path is not None:
        savefig(fig, file_path)
        return
    else:
        return fig
Exemple #11
0
def ridge_line(df_act,
               t_range='day',
               idle=False,
               n=1000,
               dist_scale=0.05,
               ylim_upper=1.1,
               figsize=(10, 8)):
    """
    Parameters
    ----------
    ylim_upper: float
        height that determines how many ridgelines are displayed. Adjust value to fit all 
        the ridgelines into the plot
    dist_scale: float
        the scale of the distributions of a ridgeline. 
    """
    if idle:
        df_act = add_idle(df_act)

    def date_2_second(date):
        """ maps time onto seconds of a day 
        Parameters
        ----------
        date : np.datetime64
            all the dates are on the day 1990-01-01

        Returns
        -------

        """
        val = (date - np.datetime64('1990-01-01')) / np.timedelta64(1, 's')
        total_seconds = 60 * 60 * 24
        assert val <= total_seconds and val >= 0
        return int(val)

    title = 'Activity distribution over one day'

    df = activities_dist(df_act.copy(), t_range, n)
    df = df.apply(np.vectorize(date_2_second))
    # sort every columns values ascending
    for col in df.columns:
        df[col] = df[col].sort_values()

    grouped = [(col, df[col].values) for col in df.columns]

    fig, ax = plt.subplots(figsize=figsize)
    acts, data = zip(*grouped)
    ridgeline(data,
              labels=acts,
              overlap=.85,
              fill='tab:blue',
              n_points=1000,
              dist_scale=dist_scale)
    plt.title(title)

    plt.gca().spines['left'].set_visible(False)
    plt.gca().spines['right'].set_visible(False)
    plt.gca().spines['top'].set_visible(False)
    plt.ylim((0, 1.1))
    plt.xlabel('day')

    # set xaxis labels
    def func(x, p):
        #x = x + 0.5
        #if x == 0.0 or str(x)[-1:] == '5':
        #    return ''
        #else:
        if True:
            if int(x / k) < 10:
                return '0{}:00'.format(int(x / k) + 1)
            else:
                return '{}:00'.format(int(x / k) + 1)

    a = 0
    b = 60 * 60 * 24
    k = (b - a) / 24

    plt.xlim((a, b))
    tcks_pos = np.arange(0, 23) * k + (-0.5 + k)

    x_locator = ticker.FixedLocator(tcks_pos)
    ax.xaxis.set_major_formatter(ticker.FuncFormatter(func))
    ax.xaxis.set_major_locator(x_locator)
    fig.autofmt_xdate(rotation=45)

    plt.grid(zorder=0)
    plt.show()
Exemple #12
0
def heatmap_contingency_overlaps(df_devs=None, df_acts=None, df_con_tab=None, figsize=None, \
                                 z_scale='log', idle=False, numbers=True, file_path=None):
    """
    Plots a heatmap the device on and off intervals are measured against
    the activities

    Parameters
    ----------
    df_devs : pd.DataFrame, optional
        recorded devices from a dataset. For more information refer to
        :ref:`user guide<device_dataframe>`. If the parameter *df_devs* is not set,
        the parameter *df_con_tab* has to be set.
    df_acts : pd.DataFrame, optional
        recorded activities from a dataset. Fore more information refer to the
        :ref:`user guide<activity_dataframe>`. If the parameter *df_acts* is not set,
        the parameter *df_con_tab* has to be set.
    df_con_tab : pd.DataFrame, optional
        A precomputed contingency table. If the *df_con_tab* parameter is given, parameters
        *df_acts* and *df_devs* are ignored. The contingency table can be computed
        in :ref:`stats <stats_dna_con_dur>`.
    figsize : (float, float), optional
        width, height in inches. If not provided, the figsize is inferred by automatically.
    z_scale : {"log", "linear"}, default: 'log'
        The axis scale type to apply.
    numbers : bool, default: True
        Whether to display numbers inside the heatmaps fields or not.
    idle : bool, default: False
        Determines whether gaps between activities should be assigned
        the activity *idle* or be ignored.
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plot import plot_hm_contingency_duration
    >>> plot_hm_contingency_duration(data.df_devices, data.df_activities)

    .. image:: ../_static/images/plots/cont_hm_duration.png
       :height: 300px
       :width: 800 px
       :scale: 90 %
       :alt: alternate text
       :align: center

    Returns
    -------
    fig : Figure or None
        If the parameter file_path is specified, the method return None rather than a matplotlib figure.
    """
    assert (df_devs is not None
            and df_acts is not None) or df_con_tab is not None

    title = 'Mutual time: activities vs. devices'
    cbarlabel = 'mutual time in seconds'

    if df_con_tab is None:
        if idle:
            df_acts = add_idle(df_acts.copy())
        df_con = contingency_duration(df_devs, df_acts)
    else:
        df_con = df_con_tab

    # convert time (ns) to seconds
    df_con = df_con.astype(int) / 1000000000

    # rename labels
    df_con = df_con.reset_index(drop=False)
    df_con['index'] = df_con['index'].apply(lambda x: x
                                            if "Off" in x else "On")
    df_con = df_con.set_index('index')

    # set values
    vals = df_con.values.T
    acts = df_con.columns.values
    devs = list(df_con.index)

    valfmt = matplotlib.ticker.FuncFormatter(
        lambda x, p: func_formatter_seconds2time(x, p))

    heatmap_contingency(acts,
                        devs,
                        vals,
                        title,
                        cbarlabel,
                        valfmt=valfmt,
                        figsize=figsize,
                        z_scale=z_scale,
                        numbers=numbers)