def test_sampling_theta(self): nclasses, nannotators, nitems = 3, 5, 5000 nsamples = 1000 # create random model (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) # create random data annotations = true_model.generate_annotations(nitems) # create a new model model = ModelBt.create_initial_state(nclasses, nannotators) # get optimal parameters (to make sure we're at the optimum) model.map(annotations) # modify parameters, to give false start to sampler real_theta = model.theta.copy() model.theta = model._random_theta(model.nannotators) # save current parameters gamma_before, theta_before = model.gamma.copy(), model.theta.copy() samples = model.sample_posterior_over_accuracy( annotations, nsamples, burn_in_samples=100, thin_samples=2 ) # test: the mean of the sampled parameters is the same as the MLE one # (up to 3 standard deviations of the estimate sample distribution) testing.assert_array_less(np.absolute(samples.mean(0)-real_theta), 3.*samples.std(0)) # check that original parameters are intact testing.assert_equal(model.gamma, gamma_before) testing.assert_equal(model.theta, theta_before)
def test_log_likelihood(self): # check that log likelihood is maximal at true parameters nclasses, nannotators, nitems = 3, 5, 1000 # create random model and data (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) max_llhood = true_model.log_likelihood(annotations) # perturb gamma for _ in xrange(20): theta = true_model.theta gamma = np.random.normal(loc=true_model.gamma, scale=0.1) gamma = np.clip(gamma, 0., 1.) gamma /= gamma.sum() model = ModelBt(nclasses, nannotators, gamma, theta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood) # perturb theta for _ in xrange(20): gamma = true_model.gamma theta = np.random.normal(loc=true_model.theta, scale=0.1) theta = np.clip(theta, 0., 1.) model = ModelBt(nclasses, nannotators, gamma, theta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood)
def test_missing_annotations(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 2, 3, 10000 # create random model and data (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # remove about 10% of the annotations for _ in range(nitems * nannotators // 10): i = np.random.randint(nitems) j = np.random.randint(nannotators) annotations[i, j] = MV # create a new, empty model and infer back the parameters model = ModelBt.create_initial_state(nclasses, nannotators) before_llhood = (model.log_likelihood(annotations) + model._log_prior(model.theta)) model.map(annotations) after_llhood = (model.log_likelihood(annotations) + model._log_prior(model.theta)) testing.assert_allclose(model.gamma, true_model.gamma, atol=1e-1, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=1e-1, rtol=0.) self.assertGreater(after_llhood, before_llhood)
def test_missing_annotations(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 2, 3, 10000 # create random model and data (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # remove about 10% of the annotations for _ in range(nitems*nannotators//10): i = np.random.randint(nitems) j = np.random.randint(nannotators) annotations[i,j] = MV # create a new, empty model and infer back the parameters model = ModelBt.create_initial_state(nclasses, nannotators) before_llhood = (model.log_likelihood(annotations) + model._log_prior(model.theta)) model.map(annotations) after_llhood = (model.log_likelihood(annotations) + model._log_prior(model.theta)) testing.assert_allclose(model.gamma, true_model.gamma, atol=1e-1, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=1e-1, rtol=0.) self.assertGreater(after_llhood, before_llhood)
def test_sampling_theta(self): nclasses, nannotators, nitems = 3, 5, 5000 nsamples = 1000 # create random model (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) # create random data annotations = true_model.generate_annotations(nitems) # create a new model model = ModelBt.create_initial_state(nclasses, nannotators) # get optimal parameters (to make sure we're at the optimum) model.map(annotations) # modify parameters, to give false start to sampler real_theta = model.theta.copy() model.theta = model._random_theta(model.nannotators) # save current parameters gamma_before, theta_before = model.gamma.copy(), model.theta.copy() samples = model.sample_posterior_over_accuracy(annotations, nsamples, burn_in_samples=100, thin_samples=2) # test: the mean of the sampled parameters is the same as the MLE one # (up to 3 standard deviations of the estimate sample distribution) testing.assert_array_less(np.absolute(samples.mean(0) - real_theta), 3. * samples.std(0)) # check that original parameters are intact testing.assert_equal(model.gamma, gamma_before) testing.assert_equal(model.theta, theta_before)
def test_inference(self): # perfect annotation, check that inferred label is correct nclasses, nannotators, nitems = 3, 5, 50 * 8 # create random model (this is our ground truth model) gamma = np.ones((nclasses, )) / float(nclasses) theta = np.ones((8, )) * 0.999 true_model = ModelBt(nclasses, nannotators, gamma, theta) # create random data labels = true_model.generate_labels(nitems) annotations = true_model.generate_annotations_from_labels(labels) posterior = true_model.infer_labels(annotations) testing.assert_allclose(posterior.sum(1), 1., atol=1e-6, rtol=0.) inferred = posterior.argmax(1) testing.assert_equal(inferred, labels) self.assertTrue(np.all(posterior[np.arange(nitems), inferred] > 0.999)) # at chance annotation, disagreeing annotators: get back prior gamma = ModelBt._random_gamma(nclasses) theta = np.ones((nannotators, )) / float(nclasses) model = ModelBt(nclasses, nannotators, gamma, theta) data = np.array([[MV, 0, 1, 2, MV]]) testing.assert_almost_equal(np.squeeze(model.infer_labels(data)), model.gamma, 6)
def test_log_likelihood_loop_design(self): # behavior: the log likelihood of the new class should match the one # of the more specialized class nclasses, nannotators, nitems = 4, 8, 100 # create specialized model, draw data true_model = ModelBtLoopDesign.create_initial_state(nclasses) annotations = true_model.generate_annotations(nitems) expect = true_model.log_likelihood(annotations) model = ModelBt(nclasses, nannotators, gamma=true_model.gamma, theta=true_model.theta) llhood = model.log_likelihood(annotations) np.testing.assert_almost_equal(llhood, expect, 10)
def test_create_model(self): nclasses = 8 nannotators = 32 model = ModelBt.create_initial_state(nclasses, nannotators) self.assertEqual(model.nannotators, nannotators) self.assertEqual(model.gamma.shape[0], nclasses) self.assertEqual(model.theta.shape[0], nannotators)
def test_inference(self): # perfect annotation, check that inferred label is correct nclasses, nannotators, nitems = 3, 5, 50*8 # create random model (this is our ground truth model) gamma = np.ones((nclasses,)) / float(nclasses) theta = np.ones((8,)) * 0.999 true_model = ModelBt(nclasses, nannotators, gamma, theta) # create random data labels = true_model.generate_labels(nitems) annotations = true_model.generate_annotations_from_labels(labels) posterior = true_model.infer_labels(annotations) testing.assert_allclose(posterior.sum(1), 1., atol=1e-6, rtol=0.) inferred = posterior.argmax(1) testing.assert_equal(inferred, labels) self.assertTrue(np.all(posterior[np.arange(nitems),inferred] > 0.999)) # at chance annotation, disagreeing annotators: get back prior gamma = ModelBt._random_gamma(nclasses) theta = np.ones((nannotators,)) / float(nclasses) model = ModelBt(nclasses, nannotators, gamma, theta) data = np.array([[MV, 0, 1, 2, MV]]) testing.assert_almost_equal(np.squeeze(model.infer_labels(data)), model.gamma, 6)
def test_log_likelihood(self): # check that log likelihood is maximal at true parameters nclasses, nannotators, nitems = 3, 5, 1000 # create random model and data (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) max_llhood = true_model.log_likelihood(annotations) # perturb gamma for _ in range(20): theta = true_model.theta gamma = np.random.normal(loc=true_model.gamma, scale=0.1) gamma = np.clip(gamma, 0., 1.) gamma /= gamma.sum() model = ModelBt(nclasses, nannotators, gamma, theta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood) # perturb theta for _ in range(20): gamma = true_model.gamma theta = np.random.normal(loc=true_model.theta, scale=0.1) theta = np.clip(theta, 0., 1.) model = ModelBt(nclasses, nannotators, gamma, theta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood)
def test_map_estimation(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 3, 5, 5000 # create random model and data (this is our ground truth model) true_model = ModelBt.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # create a new, empty model and infer back the parameters model = ModelBt.create_initial_state(nclasses, nannotators) before_obj = model.log_likelihood(annotations) + model._log_prior() model.map(annotations) after_obj = model.log_likelihood(annotations) + model._log_prior() testing.assert_allclose(model.gamma, true_model.gamma, atol=0.05, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=0.05, rtol=0.) self.assertGreater(after_obj, before_obj)
def test_annotations_compatibility(self): nclasses = 3 nannotators = 5 model = ModelBt.create_initial_state(nclasses, nannotators) # test method that checks annotations compatibility anno = np.array([[0, 1, MV, MV, MV]]) self.assertTrue(model.are_annotations_compatible(anno)) anno = np.array([[0, 0, 0, 0]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[4, 0, 0, 0, 0]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[-2, MV, MV, MV, MV]]) self.assertFalse(model.are_annotations_compatible(anno))
def test_generate_annotations(self): # test to check that annotations are masked correctly when the number # of items is not divisible by the number of annotators nclasses, nannotators, nitems = 5, 7, 201 model = ModelBt.create_initial_state(nclasses, nannotators) annotations = model.generate_annotations(nitems) valid = is_valid(annotations) self.assertEqual(annotations.shape, (nitems, nannotators)) model.are_annotations_compatible(annotations) # perfect annotators, annotations correspond to prior nitems = 20000 model.theta[:] = 1. annotations = model.generate_annotations(nitems) freq = labels_frequency(annotations, nclasses) np.testing.assert_almost_equal(freq, model.gamma, 2)
def test_raise_error_on_incompatible_annotation(self): nclasses, nannotators = 3, 7 model = ModelBt.create_initial_state(nclasses, nannotators) anno = np.array([[MV, MV, 0, 0, 7, MV, MV]]) with self.assertRaises(PyannoValueError): model.mle(anno) with self.assertRaises(PyannoValueError): model.map(anno) with self.assertRaises(PyannoValueError): model.sample_posterior_over_accuracy(anno, 10) with self.assertRaises(PyannoValueError): model.infer_labels(anno) with self.assertRaises(PyannoValueError): model.log_likelihood(anno)