def test_const_tensor_from_tensor_has_memory_area_access_after_deletion_of_original_tensor( ): tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), ann.DataType_Float32) tensor = ann.Tensor(tensor_info) tensor.get_memory_area()[0] = 100 copied_mem = tensor.get_memory_area().copy() assert 100 == copied_mem[0], "Memory was copied correctly" copied_tensor = ann.ConstTensor(tensor) tensor.get_memory_area()[0] = 200 assert 200 == tensor.get_memory_area( )[0], "Tensor and copied Tensor point to the same memory" assert 200 == copied_tensor.get_memory_area( )[0], "Tensor and copied Tensor point to the same memory" assert 100 == copied_mem[0], "Copied test memory not affected" copied_mem[0] = 200 # modify test memory to equal copied Tensor del tensor np.testing.assert_array_equal(copied_tensor.get_memory_area(), copied_mem), "After initial tensor was deleted, " \ "copied Tensor still has " \ "its memory as expected"
def test_const_tensor_multi_dimensional_input(dt, data): tensor = ann.ConstTensor(ann.TensorInfo(ann.TensorShape((2, 2, 3, 3)), dt), data) assert data.size == tensor.GetNumElements() assert data.nbytes == tensor.GetNumBytes() assert dt == tensor.GetDataType() assert tensor.get_memory_area().data
def test_create_tensor_undefined_datatype(): tensor_info = ann.TensorInfo() tensor_info.SetDataType(99) with pytest.raises(ValueError) as err: ann.Tensor(tensor_info) assert 'The data type provided for this Tensor is not supported.' in str( err.value)
def test_create_const_tensor_from_tensor(): tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), ann.DataType_Float32) tensor = ann.Tensor(tensor_info) copied_tensor = ann.ConstTensor(tensor) assert copied_tensor != tensor, "Different objects" assert copied_tensor.GetInfo() != tensor.GetInfo(), "Different objects" assert copied_tensor.get_memory_area( ).ctypes.data == tensor.get_memory_area().ctypes.data, "Same memory area" assert copied_tensor.GetNumElements() == tensor.GetNumElements() assert copied_tensor.GetNumBytes() == tensor.GetNumBytes() assert copied_tensor.GetDataType() == tensor.GetDataType()
def test_tensor_info_ctor_shape(): tensor_shape = ann.TensorShape((1, 1, 2)) tensor_info = ann.TensorInfo(tensor_shape, ann.DataType_QAsymmU8, 0.5, 1) assert 2 == tensor_info.GetNumElements() assert 3 == tensor_info.GetNumDimensions() assert ann.DataType_QAsymmU8 == tensor_info.GetDataType() assert 0.5 == tensor_info.GetQuantizationScale() assert 1 == tensor_info.GetQuantizationOffset() shape = tensor_info.GetShape() assert 2 == shape.GetNumElements() assert 3 == shape.GetNumDimensions()
def test_output_slot(self, network): # Create input, addition & output layer input1 = network.AddInputLayer(0, "input1") input2 = network.AddInputLayer(1, "input2") add = network.AddAdditionLayer("addition") output = network.AddOutputLayer(0, "output") # Connect the input/output slots for each layer input1.GetOutputSlot(0).Connect(add.GetInputSlot(0)) input2.GetOutputSlot(0).Connect(add.GetInputSlot(1)) add.GetOutputSlot(0).Connect(output.GetInputSlot(0)) # Check IInputSlot GetConnection() add_get_input_connection = add.GetInputSlot(0).GetConnection() output_get_input_connection = output.GetInputSlot(0).GetConnection() # Check IOutputSlot GetConnection() add_get_output_connect = add.GetOutputSlot(0).GetConnection(0) assert isinstance(add_get_output_connect.GetConnection(), ann.IOutputSlot) # Test IOutputSlot GetNumConnections() & CalculateIndexOnOwner() assert add_get_input_connection.GetNumConnections() == 1 assert len(add_get_input_connection) == 1 assert add_get_input_connection[0] assert add_get_input_connection.CalculateIndexOnOwner() == 0 # Check GetOwningLayerGuid(). Check that it is different for add and output layer assert add_get_input_connection.GetOwningLayerGuid() != output_get_input_connection.GetOwningLayerGuid() # Set TensorInfo test_tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), ann.DataType_Float32) # Check IsTensorInfoSet() assert not add_get_input_connection.IsTensorInfoSet() add_get_input_connection.SetTensorInfo(test_tensor_info) assert add_get_input_connection.IsTensorInfoSet() # Check GetTensorInfo() output_tensor_info = add_get_input_connection.GetTensorInfo() assert 2 == output_tensor_info.GetNumDimensions() assert 6 == output_tensor_info.GetNumElements() # Check Disconnect() assert output_get_input_connection.GetNumConnections() == 1 # 1 connection to Outputslot0 from input1 add.GetOutputSlot(0).Disconnect(output.GetInputSlot(0)) # disconnect add.OutputSlot0 from Output.InputSlot0 assert output_get_input_connection.GetNumConnections() == 0
def _get_tensor_info(dt): tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), dt) return tensor_info
def test_add_constant_layer_to_fully_connected(): inputWidth = 1 inputHeight = 1 inputChannels = 5 inputNum = 2 outputChannels = 3 outputNum = 2 inputShape = (inputNum, inputChannels, inputHeight, inputWidth) outputShape = (outputNum, outputChannels) weightsShape = (inputChannels, outputChannels) biasShape = (outputChannels, ) input = np.array([[1.0, 2.0, 3.0, 4.0, 5.0], [5.0, 4.0, 3.0, 2.0, 1.0]], dtype=np.float32) weights = np.array( [[.5, 2., .5], [.5, 2., 1.], [.5, 2., 2.], [.5, 2., 3.], [.5, 2., 4.]], dtype=np.float32) biasValues = np.array([10, 20, 30], dtype=np.float32) expectedOutput = np.array([[ 0.5 + 1.0 + 1.5 + 2.0 + 2.5 + biasValues[0], 2.0 + 4.0 + 6.0 + 8.0 + 10. + biasValues[1], 0.5 + 2.0 + 6.0 + 12. + 20. + biasValues[2] ], [ 2.5 + 2.0 + 1.5 + 1.0 + 0.5 + biasValues[0], 10.0 + 8.0 + 6.0 + 4.0 + 2. + biasValues[1], 2.5 + 4.0 + 6.0 + 6. + 4. + biasValues[2] ]], dtype=np.float32) network = ann.INetwork() input_info = ann.TensorInfo(ann.TensorShape(inputShape), ann.DataType_Float32, 0, 0, True) input_tensor = ann.ConstTensor(input_info, input) input_layer = network.AddInputLayer(0, "input") w_info = ann.TensorInfo(ann.TensorShape(weightsShape), ann.DataType_Float32, 0, 0, True) w_tensor = ann.ConstTensor(w_info, weights) w_layer = network.AddConstantLayer(w_tensor, "weights") b_info = ann.TensorInfo(ann.TensorShape(biasShape), ann.DataType_Float32, 0, 0, True) b_tensor = ann.ConstTensor(b_info, biasValues) b_layer = network.AddConstantLayer(b_tensor, "bias") fc_descriptor = ann.FullyConnectedDescriptor() fc_descriptor.m_BiasEnabled = True fc_descriptor.m_ConstantWeights = True fully_connected = network.AddFullyConnectedLayer(fc_descriptor, "fc") output_info = ann.TensorInfo(ann.TensorShape(outputShape), ann.DataType_Float32) output_tensor = ann.Tensor(output_info, np.zeros([1, 1], dtype=np.float32)) output = network.AddOutputLayer(0, "output") input_layer.GetOutputSlot(0).Connect(fully_connected.GetInputSlot(0)) w_layer.GetOutputSlot(0).Connect(fully_connected.GetInputSlot(1)) b_layer.GetOutputSlot(0).Connect(fully_connected.GetInputSlot(2)) fully_connected.GetOutputSlot(0).Connect(output.GetInputSlot(0)) input_layer.GetOutputSlot(0).SetTensorInfo(input_info) w_layer.GetOutputSlot(0).SetTensorInfo(w_info) b_layer.GetOutputSlot(0).SetTensorInfo(b_info) fully_connected.GetOutputSlot(0).SetTensorInfo(output_info) preferred_backends = [ann.BackendId('CpuRef')] options = ann.CreationOptions() runtime = ann.IRuntime(options) opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions()) net_id, messages = runtime.LoadNetwork(opt_network) input_tensors = [(0, input_tensor)] output_tensors = [(0, output_tensor)] runtime.EnqueueWorkload(net_id, input_tensors, output_tensors) output_vectors = ann.workload_tensors_to_ndarray(output_tensors) assert (output_vectors == expectedOutput).all()
def test_tensor_info__str__(): tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), ann.DataType_QAsymmU8, 0.5, 1) assert tensor_info.__str__() == "TensorInfo{DataType: 2, IsQuantized: 1, QuantizationScale: 0.500000, " \ "QuantizationOffset: 1, NumDimensions: 2, NumElements: 6}"