Exemple #1
0
    def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
        dim = self.indim / 2
        in0 = inbuf[:dim]
        in1 = inbuf[dim:]
        out0 = outerr[:dim]
        out1 = outerr[dim:]
        inerr[:dim] += sigmoidPrime(in0) * in1 * out0
        inerr[dim:] += sigmoid(in0) * out0

        inerr[:dim] -= sigmoidPrime(in0) * in1 * out1
        inerr[dim:] += (1 - sigmoid(in0)) * out1
Exemple #2
0
 def fprime(self, x):
     return sigmoidPrime(x)
class LSTMLayer(NeuronLayer, ParameterContainer):
    """Long short-term memory cell layer.
    
    The input consists of 4 parts, in the following order:
    - input gate
    - forget gate
    - cell input
    - output gate
    
    """

    sequential = True
    peepholes = False
    maxoffset = 0
    
    # Transfer functions and their derivatives
    f = lambda _, x: sigmoid(x)
    fprime = lambda _, x: sigmoidPrime(x)
    g = lambda _, x: tanh(x)
    gprime = lambda _, x: tanhPrime(x)
    h = lambda _, x: tanh(x)
    hprime = lambda _, x: tanhPrime(x)
    

    def __init__(self, dim, peepholes = False, name = None):
        """ 
        :arg dim: number of cells
        :key peepholes: enable peephole connections (from state to gates)? """
        self.setArgs(dim = dim, peepholes = peepholes)
        
        # Internal buffers, created dynamically:
        self.bufferlist = [
            ('ingate', dim),
            ('outgate', dim),
            ('forgetgate', dim),
            ('ingatex', dim),
            ('outgatex', dim),
            ('forgetgatex', dim),
            ('state', dim),
            ('ingateError', dim),
            ('outgateError', dim),
            ('forgetgateError', dim),
            ('stateError', dim),
        ]
        
        Module.__init__(self, 4*dim, dim, name)
        if self.peepholes:
            ParameterContainer.__init__(self, dim*3)
            self._setParameters(self.params)
            self._setDerivatives(self.derivs)
                    
        
    def _setParameters(self, p, owner = None):
        ParameterContainer._setParameters(self, p, owner)
        dim = self.outdim
        self.ingatePeepWeights = self.params[:dim]
        self.forgetgatePeepWeights = self.params[dim:dim*2]
        self.outgatePeepWeights = self.params[dim*2:]
        
    def _setDerivatives(self, d, owner = None):
        ParameterContainer._setDerivatives(self, d, owner)
        dim = self.outdim
        self.ingatePeepDerivs = self.derivs[:dim]
        self.forgetgatePeepDerivs = self.derivs[dim:dim*2]
        self.outgatePeepDerivs = self.derivs[dim*2:]


    def _isLastTimestep(self):
        """Tell wether the current offset is the maximum offset."""
        return self.maxoffset == self.offset
                        
    def _forwardImplementation(self, inbuf, outbuf):
        self.maxoffset = max(self.offset + 1, self.maxoffset)
        
        dim = self.outdim
        # slicing the input buffer into the 4 parts
        try:
            self.ingatex[self.offset] = inbuf[:dim]
        except IndexError:
            raise str((self.offset, self.ingatex.shape))
        
        self.forgetgatex[self.offset] = inbuf[dim:dim*2]
        cellx = inbuf[dim*2:dim*3]
        self.outgatex[self.offset] = inbuf[dim*3:]
        
        # peephole treatment
        if self.peepholes and self.offset > 0:
            self.ingatex[self.offset] += self.ingatePeepWeights * self.state[self.offset-1]
            self.forgetgatex[self.offset] += self.forgetgatePeepWeights * self.state[self.offset-1]
            
        self.ingate[self.offset] = self.f(self.ingatex[self.offset])
        self.forgetgate[self.offset] = self.f(self.forgetgatex[self.offset])
        
        self.state[self.offset] = self.ingate[self.offset] * self.g(cellx)
        if self.offset > 0:
            self.state[self.offset] += self.forgetgate[self.offset] * self.state[self.offset-1]
        
        if self.peepholes:
            self.outgatex[self.offset] += self.outgatePeepWeights * self.state[self.offset]
        self.outgate[self.offset] = self.f(self.outgatex[self.offset])
        
        outbuf[:] = self.outgate[self.offset] * self.h(self.state[self.offset])
    
    def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
        dim = self.outdim
        cellx = inbuf[dim*2:dim*3]
        
        self.outgateError[self.offset] = self.fprime(self.outgatex[self.offset]) * outerr * self.h(self.state[self.offset])
        self.stateError[self.offset] = outerr * self.outgate[self.offset] * self.hprime(self.state[self.offset])
        if not self._isLastTimestep():
            self.stateError[self.offset] += self.stateError[self.offset+1] * self.forgetgate[self.offset+1]
            if self.peepholes:
                self.stateError[self.offset] += self.ingateError[self.offset+1] * self.ingatePeepWeights
                self.stateError[self.offset] += self.forgetgateError[self.offset+1] * self.forgetgatePeepWeights
        if self.peepholes:
            self.stateError[self.offset] += self.outgateError[self.offset] * self.outgatePeepWeights
        cellError = self.ingate[self.offset] * self.gprime(cellx) * self.stateError[self.offset]
        if self.offset > 0:
            self.forgetgateError[self.offset] = self.fprime(self.forgetgatex[self.offset]) * self.stateError[self.offset] * self.state[self.offset-1]
        
        self.ingateError[self.offset] = self.fprime(self.ingatex[self.offset]) * self.stateError[self.offset] * self.g(cellx)    
        
        # compute derivatives
        if self.peepholes:
            self.outgatePeepDerivs += self.outgateError[self.offset] * self.state[self.offset]
            if self.offset > 0:
                self.ingatePeepDerivs += self.ingateError[self.offset] * self.state[self.offset-1]
                self.forgetgatePeepDerivs += self.forgetgateError[self.offset] * self.state[self.offset-1]
        
        inerr[:dim] = self.ingateError[self.offset]
        inerr[dim:dim*2] = self.forgetgateError[self.offset]
        inerr[dim*2:dim*3] = cellError
        inerr[dim*3:] = self.outgateError[self.offset]
        
    def whichNeuron(self, inputIndex = None, outputIndex = None):
        if inputIndex != None:
            return inputIndex % self.dim
        if outputIndex != None:
            return outputIndex
Exemple #4
0
 def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
     inerr += sigmoidPrime(inbuf) * outerr[:self.indim]
     inerr -= sigmoidPrime(inbuf) * outerr[self.indim:]
Exemple #5
0
 def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
     inerr[:self.outdim] += (sigmoidPrime(inbuf[:self.outdim])  
                             * inbuf[self.outdim:]
                             * outerr)
     inerr[self.outdim:] += (sigmoid(inbuf[:self.outdim]) 
                             * outerr)